• Title/Summary/Keyword: 3-phase induction motor drive

Search Result 83, Processing Time 0.023 seconds

Hybrid Induction Motor Control Using a Genetically Optimized Pseudo-on-line Method

  • Lee, Jong-seok;Jang, Kyung-won;J. F. Peters;Ahn, Tae-chon
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.127-137
    • /
    • 2004
  • This paper introduces a hybrid induction motor control using a genetically optimized pseudo-on-line method. Optimization results from the use of a look-up table based on genetic algorithms to find the global optimum of an unconstrained optimization problem. The approach to induction motor control includes a pseudo-on-line procedure that optimally estimates parameters of a fuzzy PID (FPID) controller. The proposed hybrid genetic fuzzy PID (GFPID) controller is applied to speed control of a 3-phase induction motor and its computer simulation is carried out. Simulation results show that the proposed controller performs better than conventional FPID and PID controllers. The contribution of this paper is the introduction of a high performance hybrid form of induction motor control that makes on-line and real-time control of the drive system possible.

Vector Control of Induction Motor Drive Using Photovoltaic Generation (태양광 발전을 이용한 유도전동기 드라이브의 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.307-310
    • /
    • 2008
  • This paper is proposed the vector control of 3-phase induction motor drive system by photovoltaic generation. For performance of vector control using a current control voltage source inverter(CC-VSI). CC-VSI is controlled by torque and flux producing component of motor current, relating with current and voltage value of photovoltaic arrays at maximum power point that varies follow different level of insolation. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

Output filter design for conducted EMI reduction of PWM Inverter-fed Induction Motor System

  • Kim Lee-Hun;Won Chung-Yuen;Kim Young-Seok;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.761-767
    • /
    • 2001
  • In this paper, filtering techniques to reduce the adverse effects of motor leads on high-frequency PWM inverter fed AC motor drives will be examined. The filter was designed to keep the motor terminal from the cable surge impedance to reduce overvoltage reflections, ringing, and the dv/dt, di/dt. Therefore, filtering techniques are investigated to reduce the motor terminal overvoltage, ringing, and EMI noise in inverter fed ac motor drive systems. The output filter is used to limit the rate of the inverter output voltage and reduce EMI(common mode noise) to the motor. The performance of the output filter is evaluated through simulations (PSIM) and experiment on PWM inverter-fed ac motor drive(3phase, 3hp(2.2kw), input voltage 220/380V, induction motor). An experimental PWM drive system reduction of conducted EMI was implemented on an available TMS320C31 microprocessor control board. Finally, experimental results showed that the inverter output filter reduces more CM noise than the LPF(low pass filter) and reduce overvoltage and ringing at the motor terminal.

  • PDF

Neuro-Fuzzy Controller Design of DSP for Real-time control of 3-Phase induction motors (3상 유도전동기의 실시간 제어를 위한 DSP의 뉴로-퍼지 제어기 설계)

  • Lim, Tae-Woo;Kang, Hack-Su;Ahn, Tae-Chon;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2286-2288
    • /
    • 2001
  • In this paper, a drive system of induction motor with high performance is realized on the viewpoint of the design and experiment, using the DSP (TMS320F240). The speed controller for induction motor drive system is designed on the basis of a neuro-fuzzy network. The neuro-fuzzy controller acts as a feed-forward controller that provides the right control input for the plant and accomplishes error back-propagation algorithm through the network. The proposed network is used to achieve the high speedy calculation of the space vector PWM (Pulse Width Modulation) and to build the neuro-fuzzy control algorithm, for the real-time control. The proposed neuro-fuzzy algorithm on the basis of DSP shows that experimental results have good performance for the precise speed control of an induction motor drive system. It is confirmed that the proposed controller could provide more improved control performance than conventional v/f vector controllers through the experiment.

  • PDF

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

A Stator Flux Oriented V/f Control of Induction Motor in Low Speed Range

  • Kim Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.466-469
    • /
    • 2001
  • In this paper, closed loop V/f control of induction motor has been implemented by the estimated speed. Closed loop V/f control improve the performance of induction motor drive system at low speed compared to open loop V/f control. However, closed loop V/f control need speed sensor. By using the estimated speed, closed loop V/f control is possible without speed sensor. Rotor speed is calculated from the difference between synchronous frequency and slip angular frequency. 3-phase voltage reference is obtained from synchronous frequency. And the PWM technique using space vector PWM is applied in this scheme. In the space vector PWM, effective time of 3-phase voltage reference is used to simplify the calculation of effective voltage time. This scheme is simple to implement and one chip microprocessor was used in experimental system.

  • PDF

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

The Triple Current Source Inverter System for Induction Motor Drive Using a One Chip Microcomputer (One Chip Microcomputer를 이용한 유도전동기 구동용 3동 전류형 인버어터시스템)

  • Chung, Yon-Tack;Jang, Seong-Chil;Hwang, Lak-Hoon;Lee, Hoon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.162-172
    • /
    • 1991
  • In proportion to the capacity enlargement of the induction motor system controlled by current source inverter, the capacitance of the commutating capacitor is enlarged and then the spike value of output voltage is increased at the moment of charge and discharge. Moreover, the output currnet includes a number of harmonic components. Such voltage spike and harmonics generate the torque ripple and lead to bad effects on the performance of the induction motor. In this study, all the harmonics excluding 17th and 19th harmonics were mostly elimunated by adopting 18-phase Triple High Frequency Current Source Inverter(HFCSI), and the spike component of output voltage was reduced by adding the Voltage Clamping Circuit(VCC). As a result, the torque ripple and the commutation loss were reduced and the performance of the system was improved. Experiments for speed control were carried out in the tripple current source inverter system for induction motor drive. Overall system was controlled by ONE CHIP MICROCOMPUTER(INTEL 8751). Control circuits were simplified and good experimental results in the constant V/F control were obtained due to the flexibility of the microcomputer.

  • PDF

Torque Ripple Reduction in Direct Torque Control of Five-Phase Induction Motor Using Fuzzy Controller with Optimized Voltage Vector Selection Strategy

  • Shin, Hye Ung;Kang, Seong Yun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1177-1186
    • /
    • 2017
  • This paper presents a torque ripple reduction method of direct torque control (DTC) using fuzzy controller with optimal selection strategy of voltage vectors in a five-phase induction motor. The conventional DTC method has some drawbacks. First, switching frequency changes according to the hysteresis bands and motor's speed. Second, the torque ripple is rapidly increased in long control period. In order to solve these problems, some/most papers have proposed torque ripple reduction methods by using the optimal duty ratio of the non-zero voltage vector. However, these methods are complicated in accordance with the parameter. If this drawback is eliminated, the torque ripple can be reduced compared with conventional method. In addition, the DTC can be simply controlled without the use of the parameter. Therefore, the proposed algorithm is changing the voltage vector insertion time by using the designed fuzzy controller. Also, the optimized voltage vector selection method is used in accordance with the torque error. Simulation and experimental results show effectiveness of the proposed control algorithm.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.