• Title/Summary/Keyword: 3-phase AC-DC converter

Search Result 181, Processing Time 0.023 seconds

On the Design of Power Supply System for Freight Train Reefer Container Based on Simulation

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Hwang, Jaemin;Chae, Uri
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.249-257
    • /
    • 2022
  • In recent years, if we order food by easily accessing the online market with our smartphone, we can receive the product in a fresh state at dawn the next day. Cold chain is an industry that can create high added value because it has both the characteristics of general logistics and sensitivity to temperature. Based on the electrical specifications derived from the reefer container capacity requirement investigation, we proved that power supply to up to 33 reefer containers can be made by using three additional auxiliary power supplies which are applied for freight trains in Korea. In this paper, we conducted a research on a design of power supply system for freight train reefer container based on simulation as a basic research necessary for low-temperature distribution and cold chain construction based on the reefer container railroad. Consequently, the simulation was conducted using the three-phase inverter diagram in PSIM and the SVPWM (3-harmonic injection method) control technique, and it was verified that the required power voltage was satisfied with 622Vdc, which is lower than the input voltage of general SPWM of 718Vdc. The details of this paper could be used as a foundational study for constructing cold chains based on a reefer container dedicated to freight trains in the future.

MPPT Control of PV Water Pumping Using BLDC Motor-Inverter (BLDC 모터용 인버터를 이용한 PV 양수펌프의 MPPT 제어)

  • 김성남;백승길;조정민;이승환;오봉환;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.498-505
    • /
    • 2001
  • This paper shows how to design a global control of water pumping system using PV array, and tracked maximum power point of PV array only the inverter using the vector control of BLDC motor, and finding the relationships among the DC magnitudes and AC ones in order to omit the DC/DC converter. Conventional MPPT controller was unstable of reason of the ripple-current of DC link in three-phase invertor. Thus, in this paper the control algorithm of BLDC motor using $i_qs$ current is composed to improve the insecurity of conventional MPPT controller To prove the excellence of the proposed method, the contents of this paper is analyzed by means of simulation and testing for the results applying the method that J. A Domfnguez had applied to asynchronous motor to BLDC motor and that of the proposed method in this paper.

  • PDF

A Cost Reduction of SRM Drive System Using 6-switch IGBT Module (6-switch IGBT Module을 이용한 SRM 구동 시스템의 비용절감)

  • Kim, Young-Ran;Yoon, Yong-Ho;Jeong, Kyun-Ha;Lee, Byoung-Kug;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.14-16
    • /
    • 2005
  • In this paper, a new control scheme to use 6-switch inverters for 3-phase switched reluctance motors (SRM) is proposed. Compared with the conventional asymmetric converter topology, it can minimize the entire system size and cost and can increase the efficiency. Therefore, it may have a new topology for SRM to compete the other ac motors, such as induction motors, brushless dc motors, and soon. The validity of the proposed method is verified by simulation, and experimental results.

  • PDF

High Power Factor Three Phase Rectifier for High Power Density AC/DC Conversion Applications

  • Cho, J.G.;Jeong, C.Y.;Baek, J.W.;Song, D.I.;Yoo, D.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.648-653
    • /
    • 1998
  • The conventional three-phase rectifier with bulky LC output filter has been widely used in the industry because of its distinctive advantages over the active power factor correction rectifier such as simple circuit, high reliability, and low cost. Over than 0.9 power factor can be achieved, which is acceptable in most of industry applications. This rectifier, however, is not easy to use for high power density applications since the LC filter is bulky and heavy. To solve this problem, a new simple rectifier is presented in this paper. By eliminating the bulky LC filter from the conventional diode rectifier without losing most of the advantages of the conventional rectifier, very high power density power conversion with high power factor can be achieved. Operation principle and design considerations are illustrated and verified by Pspice simulation and experimental results from a prototype of 3.3 kW rectifier followed by 100KHz zero voltage switching full bridge PWM converter

  • PDF

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

SRM Drive System Using 6-switch IGBT Module (6-Switch IGBT Module을 이용한 SRM 구동 시스템)

  • Kim Yuen-Chung;Yoon Yong-Ho;Lee Won Cheol;Lee Byoung-Kuk;Won Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.569-577
    • /
    • 2005
  • In this paper, a new control scheme to use 6-switch IGBI module for 3-phase switched reluctance motors(SRM) is proposed. Compared with the conventional asymmetric bridge converter topology, it can minimize the entire system size and cost. Therefore, it may have a new topology lot SRM to compare the other ac motors, such as induction motors, brushless dc motors, and so on. The validity of the proposed method is verified by simulation, and experimental results.

On the Calculation of Energy Requirement for Freight Train Reefer Container and Methods of Supplying the Power

  • Kim, Joouk;Hwang, Sunwoo;Lee, Jae-Bum;Kim, Youngmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • Recently, securing stable supply of fresh food is deemed as one of the important tasks. Accordingly, now the presence of cold chain along with the needs of a comfortable and healthy life is growing as the online market expands and the contactless industry grows, however, cold chain is being studied only in the aspect of ground and sea transportation. And, due to global warming and strengthening global environmental regulations, we believe that it is necessary to convert the existing road-centered logistics system into a railway-centered logistics system, a low-carbon transportation means. Therefore, in this paper we calculated the maximum energy required by the reefer container as a basic research necessary for constructing the low temperature distribution and cold chain based on the reefer container railway, and conducted a study on methods of supplying the reefer container power utilizing 1. tramline, 2. battery, 3. generator. The results of this paper can be utilized as a foundational study for building a cold chain based on a reefer container dedicated to freight trains in the future.