• Title/Summary/Keyword: 3-phase 4-wire system

Search Result 74, Processing Time 0.027 seconds

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

Application of Ultrasonic Nano Crystal Surface Modification into Nitinol Stent Wire to Improve Mechanical Characteristics (나이티놀 스텐트 와이어의 기계적 특성 향상을 위한 초음파 나노표면 개질 처리에 대한 연구)

  • Kim, Sang-Ho;Suh, Tae-Suk;Lee, Chang-Soon;Park, In-Gyu;Cho, In-Sik;Pyoun, Young-Shik;Kim, Seong-Hyeon
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.80-87
    • /
    • 2009
  • Phase transformation, superelastic characteristics and variation of surface residual stress were studied for Nitinol shape memory alloy through application of UNSM technology, and life extension methods of stent were also studied by using elastic resilience and corrosion resistance. Nitinol wire of ${\phi}1.778$ mm showed similar surface roughness before and after UNSM treatment, but drawing traces and micro defects were all removed by UNSM treatment. It also changed the surface residual stress from tensile to compressive values, and XRD result showed less intensive austenite peak and clear martensite and additional R-phase peaks after UNSM treatment. Fatigue resistance could be greatly improved through removal of surface defects and rearrangement of surface residual stress from tensile to compressive state, and development of surface modification system to improve not only bio-compatability but also resistance to corrosion and wear will make it possible to develop vascular stent which can be used for circulating system diseases which run first cause of death of recent Koreans.

  • PDF

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

Development of Air Conditioner Peak Electric Power Control System using Power Line Communication (전력선 통신을 이용한 에어컨 피크 전력 제어 시스템 개발)

  • Han, Jae-Yong;Lee, Sun-Heum
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.44-51
    • /
    • 2009
  • In this paper, an air conditioner peak power control system using electric power line communication has been developed. The air conditioner power control system using RS-485 communication method is hard to install on the existing buildings due to difficulty in cabling, and the system using wireless communication methods has a weak point of not being able to be used in close space, while the developed system has its own advantages of overcoming the above mentioned obstacles. In addition, the system is extended to support not only single-phase electricity system but also three-phase four-wire electricity system, and therefore can be installed anywhere in the domestic environment. The system also has enhanced the ease of deployment, operational stability and economical efficiency by compact circuit design. Considering the current state requiring the energy sayings, the system would greatly contribute to the widespread use of the air conditioner power control system. The superiority in the performance and stability of the system has been proved by the design verification of each component such as remote air conditioner controller, electric power line gateway and so on, and the field test of the whole system.

The Ground Impedance Influence on Neutral Harmonic Currents (접지 임피던스가 중성선 고조파 전류에 미치는 영향)

  • Kim, Kyung-Chul;Paik, Seung-Hyun;Lee, Il-Moo;Kim, Jong-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.120-127
    • /
    • 2004
  • With the proliferation of nonlinear loads such as switching mode power supplies, high neurtral harmonic currents in three-phase four-wire distribution system have been observed. It has been known that the grounded impedance has an effect on the neutral current of a system which operates with harmonics present since the neutral conductor is grounded. On-site measurements of harmonic currents and voltages were made and the corresponding equivalent circuit was developed. The circuit model under study was simulated numerically and graphically through the use of the software MATLAB. Simulation results verifying the relationship between the neutral harmonic current and ground impedance are presented.

Advanced Synchronous Reference Frame Controller for three-Phase UPS Powering Unbalanced and Nonlinear Loads (3상 무정전 전원장치에 적합한 새로운 구조의 동기좌표계 전압제어기)

  • Hyun Dong-Seok;Kim Kyung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.508-517
    • /
    • 2005
  • This paper describes a high performance voltage controller for 3-phase 4-wire UPS (Uninterruptible Power Supply) system, and proposes a new scheme of synchronous reference frame controller in order to compensate for the voltage distortions due to unbalanced and nonlinear loads. Proposed scheme can eliminate the negative sequence voltage component due to unbalanced loads and also reduce the harmonic voltage component due to non-linear loads, even when the bandwidth of voltage control loop is a very low. In order to compensate for the effects of unbalanced loads, the synchronous reference frame controller with the positive and negative sequence computation block is proposed, and the synchronous frame controller with a bandpass filter is proposed to compensate for the selected harmonic frequency of output voltage. The effectiveness of the proposed scheme has been investigated and verified through computer simulations and experiments by a 30kVA UPS.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

Characteristics Analysis of Power Capacitor with Unbalanced Voltage Operation (불평형 전압 동작시 전력 커패시터 특성 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.64-72
    • /
    • 2008
  • In the three phase four wire system, voltage unbalance caused by the unbalanced load operation, gives rise to current unbalance and de-rates by the increase of machine's loss and eventually enlarges power capacity and besides has a bad effect on power quality. Power capacitor has been used for the power factor correction of inductive load and the voltage stability of power system. And it uses instead of power side for magnetic excitation of induction motor. If voltage unbalance keeps up, it affects on voltage stress at the power capacitor and finally can be caused breakdown. In this paper, we analysed that voltage and current of power capacitor increases by the voltage unbalance factor and its stress is growing more and more.

Study about Power Transformer and Lines Tracing Method based on Power Line Communication Technology (전력선 통신 기술을 활용한 변압기 및 전력선로 추적 방법 개발에 관한 연구)

  • Byun, Hee-Jung;Choi, Sang-jun;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.505-508
    • /
    • 2016
  • In city, tracing of power transmission lines is difficult due to compound installation of overhead and underground lines, transposition, bad view caused by trees or big buildings. It is hard problem for electrical technician on site to trace power transformers or power lines to serve customers in 3 phase -4 wires power distribution systems. It is necessary that the correct and fast tracing method is required for load balancing among distribution lines. Old technology use to trace lines with high power impulse injection. Our proposed method uses to trace lines with very small power high frequency signal injection. Simulation models for 3-phase power transformers, 3-phase wire lines, and customer loads are described to investigate the transmission characteristics of high frequency power line carrier. Distribution lines have only a limited ability to carry higher frequencies. Typically power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF

Live Lines Tracing Method in Power Distribution System with 3-phase-4 wires (삼상 다중 접지 배전계통에서 활선로 추적 방법)

  • Zheng, Yan-peng;Byun, Hee-Jung;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.559-562
    • /
    • 2017
  • In city, tracing of power transmission lines is difficult due to compound installation of overhead and underground lines, transposition, bad view caused by trees or big buildings. It is hard problem for electrical technician on site to trace power transformers or power lines to serve customers in 3 phase -4 wires power distribution systems. It is necessary that the correct and fast tracing method is required for load balancing among distribution lines. Old technology use to trace off-lines with high power impulse injection. Our proposed method use to trace live lines with very small power high frequency signal injection. Typical power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. Two end communication terminals are required to be synchronized between them for determination on electrically same phases. Challenging issue is to achieve synchronization without GPS providing synchronizing time. A novel power transformer and wire identification system is designed and implemented. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF