• Title/Summary/Keyword: 3-line detector

Search Result 137, Processing Time 0.032 seconds

1.4GHz-BAND RADIO INTERFERENCES AT SEOUL RADIO ASTRONOMICAL OBSERVATORY (서울대학교 전파천문대 부근의 1.4GHz 대역 전파 환경)

  • KOO BON-CHUL;LEE JUNG-WON;KIM CHANG-HEE
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • We have carried out measurements of 1.2-1.6GHz radio interferences around Seoul Radio Astronomy Observatory located in the campus of Seoul National University. We received interference signals using a pyramidal horn antenna and measured its power using a spectrum analyzer with 1MHz resolution after $\~60dB$ amplification. In order to check the spatial characteristics, we made observations at every $30^{\circ}$ in azimuth at elevation of $30^{\circ}\;and\;60^{\circ}$. Also, in order to check the temporal characteristics, we repeated the all-sky observations five times at every six hours. The results may be summarized as follows: (1) There are strong $({\geq}-20dBm)$ interferences between 1.2 and 1.4GHz. Particularly strong interferences are observed at 1.271 and 1.281GHz, which have maximum powers of -0.34dBm and -0.56dBm, respectively. (2) The characteristics of the interferences do not depend strongly on directions, although the interferences are in general weak at high elevation and in east-west direction. (3) The interferences appear for a very short $(\leq0.01s)$ period of time, so that the average power is much smaller than the maximum power. Strong interferences with large $(\leq-49.0dBm)$ average power have been observed at 1.271, 1.281, 1.339, and 1.576GHz. At these frequencies, the interferences appear repeatedly with a period of $\leq0.1s$ By analyzing the observed power, we find that, for the strongest 1.271GHz interference, the average intensity is $-171dBW/m^2/Hz$ and that the maximum intensity is $-122dBW/m^2/Hz$. If this interference is delivered to the detector without any shielding, then its power would be much greater than the rms noise of a typical line spectrum. Therefore, it is important to shield all the parts of receiver carefully from radio interferences. Also, without appropriate shielding, the sensitivity of a receiver could be limited by the interference.

  • PDF

Study on Development of the Left-Turn Actuated Signal Control Method (좌회전 감응신호제어방법 개발에 관한 연구)

  • Kim, Soo-Hee;Oh, Young-Tae;Lee, Choul-Ki;Lee, Hwan-Pil;Choi, Jin-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The left-turn actuated signal control method has been occurred various problems under the COSMOS. one of problems is a early termination for left-turn phase by u-turn vehicles at left-turn lane. Therefore, the purpose of this study is a development of the efficient left-turn actuated signal control method to improve the problem. This study was considered that setback the left-turn vehicle detector to the start point of u-turn line and adjustment of the passage time. For effective analysis of developed method, Traffic simulation was simulated by T-7F and VISSIM under various traffic conditions. The result was proved that the developed Method improved the effectiveness.

Compressibility of $FeS_{2}$ ($FeS_{2}$의 압축성 연구)

  • Kim, Young-Ho;Hwang, Gil-Chan;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.189-195
    • /
    • 2006
  • Compression work on a pyrite powder has been carried out using energy dispersive X-ray diffraction (EDXRD) with Mao-Bell type diamond anvil cell (DAC) and synchrotron radiation(SR) at room temperature. It has been reported the bulk moduli of pyrite show the large variations depending on the experimental conditions as well as the apparatus used. Thus, two kinds of sample in different pressure transmitting media of both NaCl and MgO powder emerged in alcoholic fluids were subjected to measure their compressibilities. Bulk moduli thus obtained are 138.9 GPa and 198.2 GPa, respectively, and this result contradicts to the anticipated values according to the hydrostaticity conditions of the sample chamber. This might be due to the alcoholic fluids phase transition mainly with the side effects from the difference of both solid state detector (SSD) used and E*d value applied. All experiments were performed at the Beam Line 1B2 of Pohang Light Source (PLS).

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF

Biological Damage and Risk Assessment of The Wood Cultural Properties in Fire Prevention Area (화재방제구역에 따른 목조문화재 생물손상 및 생물위험도 평가)

  • Kim, Dae Woon;Chung, Yong Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.104-111
    • /
    • 2015
  • The three-year inspection of 20 tree stumps in the fire prevention area around the wooden building confirmed that termite colonies had been rapidly spread. In particular, four buildings among thirty one wooden buildings of Songgwang-sa temple were infected by the termite, indicating that the habitate of termite has been spread across the fire prevention area over the temple area. However, a non-destructive microwave diagnosis showed that internal damages have been progressed until now, suggesting a high risk to the building. These results suggest that the fire prevention area should be properly maintained to have harmful element controlled. Therefore, effective methods are required to eliminate tree stumps or wood materials used to establish fire prevention area near wooden buildings.

The solar photospheric and chromospheric magnetic field as observed in the near-infrared

  • Collados, Manuel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.31.4-32
    • /
    • 2016
  • Observing the solar atmosphere with ground-based telescopes in the near-infrared has a number of advantages when compared to classical measurements in visible wavelengths. One of them comes from the magnetic sensitivity of spectral lines, which varies as ${\lambda}_g$, where g is the effective $Land{\acute{e}}$ factor of the transition. This wavelength dependence makes the near-infrared range adequate to study subtle spatial or temporal variations of the magnetic field. Spectral lines, such as the photospheric Fe I $1.5648{\mu}m$ spectral line, with a $Land{\acute{e}}$ factor g=3, have often been used in the past for this type of studies. To study the chromosphere, the Ca II IR triplet and the He I $1.0830{\mu}m$ triplet are the most often observed lines. The latter has the additional advantage that the photospheric Si I $1.0827{\mu}m$ is close enough so that photosphere and chromosphere can be simultaneously recorded with a single detector in a spectrograph. The instrument TIP (Tenerife Infrared Polarimeter) has been continuously operating since 1999 at the 70-cm German VTT of the Observatorio del Teide and has been recently moved to the 1.5-m German GREGOR. During all this time, results have been obtained concerning the nature of the weak photospheric magnetic field of the quiet sun, magneto-acoustic wave propagation, evolution with the cycle of sunspot magnetic fields, photospheric and chromospheric magnetic field in emerging regions, magnetic field in chromospheric structures such as filaments, prominences, flares, and spicules, etc. In this talk, I will review the main results obtained after all these observations and mention the main challenges for the future. With its novel polarization-free design and a complete suite of instruments aimed at simultaneous (imaging and spectroscopic) observations of the solar photosphere and chromosphere, the EST (European Solar Telescope) will represent a major world-wide infrastructure to understand the physical nature of all these phenomena.

  • PDF

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF

Study for Enhancement of the Detection Sensitivity in Hand-Held X-Ray Fluorescence Device (휴대용 XRF 장치의 검출감도 향상에 관한 연구)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.409-415
    • /
    • 2011
  • The method to improve the detection sensitivity of Hand-held XRF (X-Ray Fluorescence) device currently being developed is discussed. To minimize the loss of the intensity due to atmospheric gas molecules, the vacuum module, which can be filled with atmospheric or He gas, between the sample and the detector was installed. And the change of the detection sensitivity was measured in a vacuum and in the He gas-filled state. As a result, the following three important results were obtained; Firstly, XRF intensity was increased 2~4 times in the low energy range (3~4 keV). It is a very important result because the enhancement of the detection sensitivity means shortening of the detection time in Hand-held XRF device. Secondly, the possibility of detection of the elements less than 3 keV in emission energy was confirmed. Thirdly, the absorption by atmospheric gas molecules can be minimized without vacuum- sealed vessel in Hand-held XRF device, if the vacuum module filled with He gas is used. We concluded that all of three results are very meaningful in the development of a Hand-held XRF device.

Radiographic Study of Cobey Method and Modified Cobey Method (Cobey 검사법과 Modified Cobey 검사법에 대한 방사선학적 연구)

  • Go, Yu-Rim;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.167-173
    • /
    • 2019
  • The Cobey method and the modified Cobey method are most commonly used in clinical practice. Therefore, the purpose of this study was to investigate the radiological differences between Cobey and modified Cobey and provide radiographic information about changes of hindfoot image with X-ray entrance center and tube angle change in modified Cobey. This study was performed on foot and ankle phantom. First, for image comparison of Cobey and modified Cobey, the images obtained by applying the same X-ray entrance center to the ankle joint were compared and analyzed. Second, in the modified Cobey, the X-ray entrance center is set as ankle joint and lateral malleolus. The X-ray tube angle was varied from $10^{\circ}$ to $40^{\circ}$ at $5^{\circ}$ intervals for each X-ray entrance center. The images obtained by varying the X-ray tube angle from $10^{\circ}$ to $40^{\circ}$ at intervals of $5^{\circ}$ for each X-ray entrance center were compared and analyzed. The irradiation conditions were the same with 110 kVp, 200 mA, 10 ms, and 110 cm of source - image receptor distance (SID). Image evaluation was performed by two radiologists. Measurements were made on the lateral point, middle point, and calcaneus width based on a hypothetical line parallel to the calcaneal tuberosity. Data were analyzed by using descriptive statistics as the mean of the distance to each measurement location. The modified Cobey was longer than the Cobey by an average of 3 to 4 mm lateral and medial points, and the calcaneus width was similar (ICC = 0.939). In modified Cobey method, when the X-ray entrance center is ankle joint, the lateral point is about 3 mm and the medial point is about 4.3 mm longer than lateral malleolus. Also, when the X-ray tube angle is more than $20^{\circ}$, the degree of distortion is large. The ICCs for the lateral, medial point, and calcaneus width were 0.998, 0.961, and 0.997, respectively, as the X-ray entrance center and tube angle were changed. There was no significant difference between Modified Cobey and Cobey. Modified Cobey showed no need to compensate the $20^{\circ}$ detector angle of the Cobey. In addition, we suggest that tube angle should be limited within $20^{\circ}$ when modified Cobey is performed.