• Title/Summary/Keyword: 3-dimensional rock stress

Search Result 83, Processing Time 0.02 seconds

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.

Numerical analysis on stability of express railway tunnel portal

  • Zhou, Xiaojun;Hu, Hongyun;Jiang, Bo;Zhou, Yuefeng;Zhu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • On the basis of the geological conditions of high and steep mountainous slope on which an exit portal of an express railway tunnel with a bridge-tunnel combination is to be built, the composite structure of the exit portal with a bridge abutment of the bridge-tunnel combination is presented and the stability of the slope on which the express railway portal is to be built is analyzed using three dimensional (3D) numerical simulation in the paper. Comparison of the practicability for the reinforcement of slope with in-situ bored piles and diaphragm walls are performed so as to enhance the stability of the high and steep slope. The safety factor of the slope due to rockmass excavation both inside the exit portal and beneath the bridge abutment of the bridge-tunnel combination has been also derived using strength reduction technique. The obtained results show that post tunnel portal is a preferred structure to fit high and steep slope, and the surrounding rock around the exit portal of the tunnel on the high and steep mountainous slope remains stable when rockmass is excavated both from the inside of the exit portal and underneath the bridge abutment after the slope is reinforced with both bored piles and diaphragm walls. The stability of the high and steep slope is principally dominated by the shear stress state of the rockmass at the toe of the slope; the procedure of excavating rockmass in the foundation pit of the bridge abutment does not obviously affect the slope stability. In-situ bored piles are more effective in controlling the deformation of the abutment foundation pit in comparison with diaphragm walls and are used as a preferred retaining structure to uphold the stability of slope in respect of the lesser time, easier procedure and lower cost in the construction of the exit portal with bridge-tunnel combination on the high and steep mountainous slope. The results obtained from the numerical analysis in the paper can be used to guide the structural design and construction of express railway tunnel portal with bridge-tunnel combination on high and abrupt mountainous slope under similar situations.