• Title/Summary/Keyword: 3-dimensional permeable submerged breakwater

Search Result 11, Processing Time 0.021 seconds

Characteristics of Water Surface Variations around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건하에 있는 3차원투과성잠제 주변에서 수면변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.335-349
    • /
    • 2017
  • Submerged breakwaters installed under the water surface are a representative coastal structure to prevent coastal erosion, and various types of submerged breakwaters have been proposed and discussed so far. Generally, submerged breakwaters make the complex wave fields due to abrupt change in water depth at the crown of the breakwater. In this study, wave heights and mean water level formed around a breakwater are examined numerically for three-dimensional permeable submerged breakwaters. OLAFOAM, CFD open source code, is applied in the numerical analysis, and the comparisons are made with available experimental results on the permeable upright wall and the impermeable submerged breakwater to verify its applicability to the three-dimensional numerical analysis. Based on the applicability of OLAFOAM numerical code, the wave height and mean water level distribution formed around the permeable submerged breakwaters are investigated under the formation condition of salient. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases, while it decreases behind the gap, and the installing position of the breakwater from the shoreline has little influence on the change of the wave height. Furthermore, it is found that the decrease of the mean water level near the gap between breakwaters increases with decreasing of the gap width.

A Study of the Wave Control Characteristics of the Permeable Submerged Breakwater using VOF Method in Irregular Wave Fields (불규칙파동장에 있어서 VOF법에 의한 투과성잠제의 파랑제어 특성에 관한 연구)

  • Kim Do Sam;Lee Kwang Ho;Yoo Hyun Sang;Kim Chang Hoon;Son Byoung Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2004
  • The different types of coastal souctures have been constructed for the protection of coastal region from the incident waves. Among them. the permeable submerged breakwater has been widely used as a wave dissipater and sediment transport controller because of its excellent advantages in scenery effects, construction efficiency and environment aspects. This study numerically investigated the characteristics of wave energy variations and transmission coefficient at the rear of the permeable submerged breakwater installed in the irregular wave field. To analyze it's performance numerically, a two-dimensional numerical wave flume based on VOF method was used. A frequency spectral analysis showed that the spectral peak moved to the short-period in the one-row submerged breakwater, and the wave energy was distributed evenly for the whole period in the two-row submerged breakwater in the case of breaking on the submerged breakwater. The spectral peak was shown to be converged within the significant wave period at the rear of the permeable submerged breakwater in the case of non-breaking conditions. From the result of transmission coefficients analysis. it was confirmed that a considerable quantity of wave energy was transmitted to the rear of the permeable submerged breakwater in the case of non-breaking rather than breaking.

Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters (다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

Applicability of Permeable Submerged Breakwater for Discharged Flow Control (방류 흐름제어를 위한 투과성 잠제의 적용성 분석)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • The purpose of this study is to examine the control function of discharged flow due to the shape and plane arrangement of permeable submerged breakwater. For the discussion on it in detail, 3-dimensional numerical model based on PBM (Porous Body Model), which is able to simulate directly interaction of Fluid Permeable structure Seabed has been used to simulate water discharge in a NWT (Numerical Water Tank). To verify the applicability, LES-WASS-3D is analyzed comparing to the experimental result about propagation characteristics of dam-break wave through a permeable structure. Using the results obtained from numerical simulation, the effects of the shape and plane arrangement of submerged breakwater on reducing velocity and flow induction have been discussed related to the mean flow distribution and vertical distributions of horizontal velocities around ones.

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW (olaFLOW를 활용한 투과성잠제에 의한 3차원적 파-흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.166-179
    • /
    • 2018
  • This study aims at numerically investigating the water-surface characteristics such as wave height distribution depending on the current direction around the three-dimensional permeable submerged breakwaters in wave-current coexisting field which has not been considered in detail so far. In addition, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy, which act as the main external forces of formation of salient, are also examined. For numerical analysis, olaFlow which is open source code of CFD was used and the numerical tests included different types of target waves, both regular waves and irregular waves. Numerical results indicated that wave height variation with wave following or opposing a current behind the submerged breakwater is closely related to turbulent kinetic energy. Furthermore, it was found that weaker longshore currents are formed under wave-current coexisting field compared to the non-current conditions, and transport flow is attenuated. As a result, it was possible to understand the influence of current existence and direction (following and opposing) on the formation of the salient formed behind the submerged breakwaters.

3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves (불규칙파 조건 하에서 투과성잠제 주변의 수면변동 및 유속장에 관한 3차원 수치모의)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.153-165
    • /
    • 2018
  • In this study, the performance of irregular wave field generation of olaFlow is first verified by comparing the frequency spectrum of the generated waves by the wave-source using olaFlow and the target wave. Based on the wave performance of irregular waves of olaFlow, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy around the three-dimensional permeable submerged breakwaters, which act as the main external forces of the salient formation, are numerically investigated. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases and as the gap width between breakwaters increases, the longshore currents become stronger. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters.

Variation Characteristics of Irregular Wave Fields around 3-Dimensional Low-Crested-Breakwater (3차원 저마루구조물(LCS) 주변에서 불규칙파동장의 변동특성)

  • Lee, Kwang-Ho;Lee, Jun Hyeong;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.122-134
    • /
    • 2020
  • On the many coasts of South Korea, including the eastern side, it has been recently increasing the coastal disaster such as the severe coastal erosion and road damage swept away by the wave. As one of the alternatives to prevent the coastal disaster, it has been widely studied the coastal disaster reduction method by the Low-Crested Structure (LCS) in the many countries including several European countries. In this study, the olaFLow model is used to simulate the permeable LCS and wave field of the LCS through the three-dimensional irregular waves numerical analysis on the basis of the previous research. From the numerical analysis, it is evaluated the Hrms, nearshore current and time-averaged turbulent kinetic energy. In addition, the pattern of nearshore current and spatial distribution of time-averaged turbulent kinetic energy are compared with the case of submerged breakwater under the irregular wave fields. As one of significant results, it is confirmed that the pattern of nearshore current is different with the case of submerged breakwater.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.