• Title/Summary/Keyword: 3-Point bending

Search Result 677, Processing Time 0.027 seconds

A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

Inconel 617의 결정립 미세화에 의한 내부산화거동이 크렉 전파에 미치는 영향

  • Im, Jeong-Hun;Jo, Tae-Seon;Kim, Dae-Gyeong;Kim, Yeong-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.50.2-50.2
    • /
    • 2010
  • 니켈기 초내열합금 Inconel 617은 수소생산용 초고온 가스 냉각로의 열 교환기와 고온 가스관 등의 고온 배관용 후보재료로써, Cr, Mo, 와 W등의 첨가물이 함유된 고용 강화된 합금으로, 우수한 고온 강도, 크립 저항성, 내부식성 및 내산화성을 가지고 있는 것으로 알려져 있다. 본 연구에서는 결정립 미세화가 고온열화에 의해 입계를 따라 형성되는 internal oxide에 미치는 영향에 대해 평가하였고, 이러한 internal oxide가 인장응력 하에서 크렉 형성 및 전파에 미치는 영향을 평가하기 위하여 3-point bending test를 수행하였다. 미세한 결정립을 가지는 Inconel 617은 냉간압연 후 재결정을 통해 확보하였으며, as-received(AR)과 grain-refined(GR) Inconel 617은 $950^{\circ}C$에서 2000시간 동안 He분위기 하에서 열화시험을 수행하였다. AR과 GR에 형성된 internal oxide은 깊이와 분포 등의 뚜렷한 차이를 보였으며, 이러한 차이로 인해 인장응력 하에서 크렉 전파의 큰 차이를 나타내었다.

  • PDF

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Evaluation of strength according to surface abrasion of lithium disilicate glass ceramic by 3-point bending strength test (3점 굽힘강도 시험을 통한 Lithium disilicate glass ceramic의 표면 연마 정도에 따른 강도 평가)

  • Lee, Ha-Na;Kim, Eo-Bin;Kang, Seen-Young;Lee, Kyung-Eun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of lithium disilicate glass ceramic polishing on the strength of the final prosthesis. Methods: Fourteen lithium disilicate glass ceramic specimens were prepared. These were randomly divided into two groups of seven(LPG: low polishing group, HPG: high polishing group). In LPG, SiC paper was sequentially polished using 300, 600, 800, 1000 grit, and the specifications of the test piece were adjusted. HPG was sequentially polished using 300, 600, 800, 1000, 1200, 1500, and 2000 grit. Two groups of specimens are executed 3- point bending test. Using the statistical program SPSS 22.0, the average values of the strengths of the two groups were compared in the Mann-Whiteney test. The significance level was set at 0.05. Results: The mean strength value of HPG was measured at $307.14{\pm}23.28MPa$ significantly higher than LPG(p<0.001). Conclusion : The final polishing of the prosthesis is aesthetically important but has proven to play an important role in the flexural strength, early fracture, and prolongation of the prosthesis.

Bending Properties and Recommened Design Criteria for Domestic Softwood with Notch (파임을 가진 국산 침엽수재의 휨성능 및 구조설계기준에 관한 연구)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.6-12
    • /
    • 1998
  • Test results of domestic softwood lumber were presented to examine the notch effect of beams and compare to present AIJ(Architecture Institute of Japan) formula in notched wood member especially positioned in bottom side (tension side) of a beam. Notched lumber was tested under following condition : each specimen supported simply, and subjected to third-point loading at points of 1/3 of the span length. Notch was located opposite side to loading direction and notch depth were 1/6, 1/4, 1/3 of beam depth. Deflection and load were measured by digital dial guage each in 25kgf increment. Bending test results were as follows; Mpro/Mmax range (proportional and maxium bending moment ratio in notched beam) was 0.5 - 0.65. It was considered that maxium bending moment was about 1.5 times to proportional bending moment in notched beam and showed same tendency in the test result of ordinary wood specimens. AU standard formula for the tension side notch, Mmat = 0.6 ${\times}$ (Zo $\sigma$), the constant 0.6 was suitble for notch ratio(notch depth to beam depth) 1/6, but this ratio for 1/4, and 1/3 was not. So it is preferable to accept smaller value than 0.6 for notch ratio more than 1/3. These experiment results showed critical effect in tension side notched wood beam especially in greater than notch ratio 1.3 of wood beam. From the above results, it is recommened to revise design formula adoptable to domestic wood constructon member with tension side notched member.

  • PDF

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Panel (알루미늄 하니컴 샌드위치 판넬의 저속충격거동)

  • 이현석;배성인;함경춘;한경섭;송정일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.78-82
    • /
    • 2001
  • Impact behaviors of Aluminum Honeycombs Sandwich Panel(AHSP) by drop weight test were investigated. Two types of specimens with 1/2" and 1/4" cell size were tested by two impactors which are weight of $5.25\textrm{kg}_{\textrm{f}}$ and $11.9\textrm{kg}_{\textrm{f}}$. Parametric studies were achieved including the impactor weight and impact sites which consist face, long-edge, short-edge, and point of the specimen. Face one of impact sites was the strongest and short-edge one of impact sites was the weakest. The damaged area of AHSP was enlarged with the increase of impactor weight that is equal to impact energy. After 3 point bending test, fracture modes of AHSP were analyzed with AE counts. Lower facesheet was fractured in the long-edge direction and then separated between facesheet and core. In the short-edge direction after core wrinkled, lower facesheet tear occurred. Impact behavior by FE analysis were increased localized damage in fast velocity because the faster velocity of the impact was, the smaller the stress of core was. Consequently, impactor weight had an effect on widely damaged area, while the impact velocity was caused on the localized damaged area.aged area.

  • PDF

The Effect of Blasting Treatment on the Corrosion Characteristics in the Zr-based Amorphous Alloy Die Castings (Zr기 비정질 합금 다이캐스팅 주조품의 부식 특성에 미치는 블라스팅 처리의 영향)

  • Lee, Byung-Chul;Kim, Sung-Gyoo;Park, Bong-Gyu;Bae, Cha-Hurn;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A Zr-based amorphous alloy specimen was produced by vacuum die casting process. The salt spray test was carried out using the specimens in the as-cast, $Al_2O_3$ and $ZrO_2$ particle blasted state. Using these specimens, the SEM-EDX and XRD analyses, DSC measurement and bending strength test were conducted. After the salt spray test, the specimens were not experienced phase change and thermal characteristics of the alloys were remained unchanged. In the as-cast specimen, corrosion products were not observed. However, in the $Al_2O_3$ particle blasted specimen, pitting corrosion occurred and the detected corrosion products were $ZrCl_2$ and $NaZrO_3$. Due to the salt spray test, bending strength of the $Al_2O_3$ blasted specimens showed about 100 MPa lower strength than the other specimens. The bending fracture surface was vein pattern which was shown typically in the amorphous alloys.

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

Design of Composite Multilayer Surface Antenna Structure and Its Bending Fatigue Characteristics

  • Moon, Tae-Chul;Hwang, Woon-Bong
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • The present study aims to design a multilayer microstrip antenna with composite sandwich construction and investigate fatigue behavior of this multilayer SAS (surface antenna structure) that was asymmetric sandwich structure for the next generation of structural surface technology. This term, SAS, indicates that the structural surface becomes an antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, antenna elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.2 GHz. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of the SAS was obtained. The experimental results of bending fatigue were compared with single load level fatigue life prediction equations and in good agreement. The SAS concept is can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers.