• Title/Summary/Keyword: 3-Dimensional Simulation

Search Result 2,139, Processing Time 0.033 seconds

Simulation Technology of 3D Fabrics (3차원 입체 직물의 시뮬레이션 기술)

  • Park, Jung Hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2019
  • This investigation reported the simulation technologies to design the 3-dimensional fabrics such as 3 dimensional multi-layered fabric, 3 dimensional braided fabric and spacer fabric. The simulation system or software has been actively used to develop products of 3 dimensional fabric which can be reduced development costs and time. Thus, many countries such as Japan, Germany, China, and U.K. show great interests on simulation technologies for developing new materials and processes including 3 dimensional fabric field. In this study, simulation systems have been reviewed for the 3 dimensional fabric design system from Mikawa Textile Research Center, Japan; ProCad and ProFab from Karl Mayer and Texion, Germany; xComposites from China; TexGen from Nottingham University, U.K.; TexPro from Young Woo CnI, Korea, respectively.

Rockfall and Toppling Failure Simulation of Rock Slopes using 3-Dimensional Discontinuous Deformation Analysis (3차원 불연속변형해석법을 이용한 암반사면의 낙석과 전도 파괴 시뮬레이션)

  • Hwang, Jae-Yun;Ohnishi, Yuzo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Many researches on disaster prevention using computer simulation methods can be performed to minimize the damage of property and to protect human life. Discontinuous deformation analysis (DDA) is a new computer simulation method to analyze the behavior of discontinuous rock masses. Since most rock slope problems are 3-dimensional in nature, 2-dimensional deformation analysis has limited application. In this study, the basic principles of 3-dimensional discontinuous deformation analysis are described. The newly developed 3-dimensional discontinuous deformation analysis method is proposed as the computer simulation method for discontinuous rock masses. Then, the failure behavior of rock slopes are simulated using 3-dimensional discontinuous deformation analysis. The simulation results are compared and examined with the failure behavior at the rock slopes. The results show the applicability of 3-dimensional discontinuous deformation analysis to analyze the deformation and failure mechanisms of rock slopes.

GK-DEVS : Geometric and Kinematic DEVS for Simulation of 3 Dimensional Man-Made Systems (GK-DEVS : 3차원 인간제작 시스템의 시뮬레이션을 위한 형상 기구학 DEVS)

  • 황문호;천상욱;최병규
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.39-54
    • /
    • 2000
  • Presented in this paper is a modeling and simulation methodology for 3 dimensional man-made systems. Based on DEVS(discrete event system specification) formalism[13], we propose GK-DEVS (geometrical and kinematic DEVS) formalism to describe the geometrical and kinematic structure and continuous state dynamics. To represent geometry and kinematics, we add a hierarchical structure to the conventional atomic model. In addition, we employ the "empty event" and its external event function for continuous state changing. In terms of abstract simulation algorithm[13], the simulation method of GK-DEVS, named GK-Simulator, is proposed for combined discrete-continuous simulation. Using GK-DEVS, the simulation of an FMS(flexible manufacturing system) consisting of a luring machine, a 3-axis machine and a RGV-mounted robot has been peformed.en peformed.

  • PDF

A Method for Constructing 3-Dimensional C-obstacles Using Free Arc (프리아크를 이용한3차원 형상 공간 장애물 구성 방법)

  • 이석원;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.970-975
    • /
    • 2002
  • We suggests an effective method to construct time-varying C-obstacles in the 3-dimensional configuration space (C-space) using free arc. The concept of free arc was defined mathematically and the procedure to find free arc in the case off-dimensional C-space was derived in [1]. We showed that time-varying C-obstacles can be constructed efficiently using this concept, and presented simulation results for two SCARA robot manipulators to verify the efficacy of the proposed approach. In this paper, extensions of this approach to the 3-dimensional C-space is introduced since nearly all industrial manipulators are reasonably treated ill the too or three dimensional C-space f3r collision avoidance problem The free arc concept is summarized briefly and the method to find lice arc in the 3-dimensional f-space is explained. To show that this approach enables us to solve a practical collision avoidance problem simulation results f3r two PUMA robot manipulators are presented.

Study on the Computational Simulation of Large Scale Gap Test (Large Scale Gap 시험의 전산모사연구)

  • Lee, Jin-Sung;Park, Jung-Su;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.932-940
    • /
    • 2011
  • This study describes computational simulation results in 2-dimensional and 3-dimensional space concerning large scale gap test(LSGT) by using commercial hydrocode such as AUTODYN and LS-DYNA to analyze the detonation phenomenons of high explosives. To consider the possibilities of LSGT simulation, we used Lee - Tarver reaction rate model of PBX-9404 and Comp-B which were implemented AUTODYN's material library. Also we have tried the diverse numerical schemes such as Lagrangian, Eulerian and ALE(Arbitary Lagrangian Eulerian), SPH(Smoothed Particle Hydrodynamics) in LSGT simulations. After LSGT simulations, we compared the simulation results with published results to verify the LSGT simulations. According to the LSGT simulations, we have concluded as follows. In 2-dimensional and 3-dimensional space, Lagrangian solver provided the most reliable results based on analysis time and accuracy. When using two hydrocodes in 2-dimensional space, the simulation results are almost same except one explosive model. We have verified the modeling method and simulation results of the LSGT by using the commenrcial hydrocode in this study.

A Study on the 3D Scanning of Fashionable Textile Materials - Ripple-finished Cotton Fabric and Shrink-proof Finished/Felted Wool Fabric -

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.101-112
    • /
    • 2011
  • Three-dimensional(3D) virtual clothing simulation system may require the use of physical, mechanical, and configurational data in order to mimic the actual clothing with high degree of realism. Therefore the 3-dimensional scanning system based on optical methods was adopted to extract the 3-dimensional data of the fabric surface. In this study, the appearances of the 3-dimensionally transformed textile fabrics via several finishing procedures were investigated using a 3D scanning system. The wool gauze fabrics treated with the shrink-proof finishing and the felting process showed height changes up to 4.5mm. The 3-dimensional configuration may be objectively described by the use of mesh generation from the scanned output. The generated mesh information may further be utilized in the 3D virtual clothing simulation system for accurate description of the fashionable textile materials used in the simulation system.

3-Dimensional Simulation for the Design of Automated Container Terminal (자동화 컨테이너터미널의 설계를 위한 3차원 시뮬레이션)

  • 최용석;하태영;양창호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.471-477
    • /
    • 2004
  • In this study, we introduce a 3-dimensional simulation to support the Design on ACT(Automated Container Terminal). This simulation system developed to simulate virtual operations of ACT using 3-dimensional simulation and animate the simulated results with real time. And the developed system applied an object-oriented design and C++ programming to increase the reusability and extensibility. We select several items of performance evaluation for objects used in ACT in terms of problem detection, problem forecast, and logic feasibility, and provide evaluation points for the design of ACT.

  • PDF

Three Dimensional Adaptive Mesh Generator for Thermal Oxidation Simulation (열산화 공정 시뮬레이션을 위한 3차원 적응 메쉬 생성기 제작에 관한 연구)

  • 윤상호;이제희;윤광섭;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.48-51
    • /
    • 1995
  • We have developed the three dimensional mesh generator for three dimensional process simulation using the FEM(Finite Element Method). Tetrahedron element construct the presented three dimensional mesh, which is suitable for the simulation of three dimensional behavior of the LOCOS. The simulation of thermal oxidation is one of the problem in scale downed semiconductor processes. As three dimensional simulators use the huge size of the memory, we use the efficient method that generates the new nodes inside the growing oxide and removes the nodes nearby the SiO2/Si interface in silicon. The resented three dimensional mesh generator was designed to be used in various process simulations, for instance thermal oxidation, silicidation, nitridation, ion implantation, diffusion, and so on.

  • PDF

A study on Calculating the Resistance characteristics analysis on Three-Dimensional Structure Using Computer Simulation Method. (컴퓨터 시뮬레이션을 이용한 3차원적 구조에서의 저항 특성 분석에 관한 연구)

  • Jang, U-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.683-686
    • /
    • 2005
  • By now, we have been analysing the resistance values on 3 dimensional structure using experimental statical method or theoretical modeling, while devices miniaturizing reveals the limitation of the traditional methods to calculate 3 dimensional resistance. In addition, 2 dimensional analysing can not produce 3 dimensional characteristic following miniaturizing. To solve the limitations , we must do high level modeling of semi-conductor process. In this thesis, we analyzed the Laplace equation that is the basic and important for 3 dimensional structure resistance with computer simulation method and on the basis of this, analyzed the characteristic of resistance of 3 dimensional structure communication semiconductor device.

  • PDF

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF