• 제목/요약/키워드: 3-Dimensional Resolution

검색결과 540건 처리시간 0.031초

3-Dimensional Tiling Technique to Process Huge Size High Resolution Satellite Image Seamlessly and Rapidly

  • Kim, Jun-Chul;Jung, Chan-Gyu;Kim, Moon-Gyu
    • Korean Journal of Remote Sensing
    • /
    • 제23권5호
    • /
    • pp.375-383
    • /
    • 2007
  • This paper presents the method to provide a fast service for user in image manipulation such as zooming and panning of huge size high resolution satellite image(e.g. Giga bytes per scene). The proposed technique is based on the hierarchical structure that has 3D-Tiling in horizontal and vertical direction to provide the image service more effectively than 2D-Tiling technique in the past does. The essence of the proposed technique is to create tiles of optimum level in real time on the basis of current displaying area, which change as user manipulates huge image. Consequently, this technique provides seamless service, and will be very powerful and useful for manipulation of images of huge size without data conversion.

3-Dimensional Shape Measurement System for BGA Balls Using PMP Method (PMP 방식을 이용한 BGA 볼의 3차원 형상측정 시스템)

  • Kim, Hyo Jun;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제22권1호
    • /
    • pp.59-65
    • /
    • 2016
  • As modern electronic devices get smaller and smaller, high-resolution, large Field-Of-View (FOV), fast, and cost-effective 3-dimensional (3-D) measurement is requested more and more. In particular, defect inspection machines using machine-vision technology nowadays require 3-D inspection as well as the conventional 2-D inspection. Phase Measuring Profilometry (PMP) is one of the fast non-contact 3-D shape measuring methods currently being extensively investigated in the electronic component manufacturing industry. The PMP system is well known and is successfully applied to measuring complex surface profiles with varying reflectance properties. However, for highly reflective surfaces, such as Ball Grid Arrays (BGAs), it has difficulty accurately measuring 3-D shapes. In this paper, we propose a new fast optical system that can eliminate the highly reflective saturated regions in BGA ball images. This is achieved by utilizing four Low Intensity Grating (LIG) images together with the conventional High Intensity Grating (HIG) images. Extensive experiments using BGA samples show a repeatability of under ${\pm}20um$ in standard deviation, which is suitable for most 3-D shape measurements of BGAs.

Camera Focal Length Measuring Method and 3-Dimension Image Correspondence of the Axial Motion Model on Stereo Computer Vision (3-Dimension 영상을 이용한 카메라 초점측정 및 동일축 이동 모델의 영상 정합)

  • 정기룡
    • Journal of the Korean Institute of Navigation
    • /
    • 제16권3호
    • /
    • pp.77-85
    • /
    • 1992
  • Camera arrangement for depth and image correspondence is very important to the computer vision. Two conventional comera arrangements for stereo computer vision are lateral model and axial motion model. In this paper, using the axial motion stereo camera model, the algorithm for camera focal length measurement and the surface smoothness with the radiance-irradiance is proposed fro 3-dimensional image correspondence on stereo computer vision. By adapting the above algorithm, camera focal length can be measured precisely and the resolution of 3-dimensional image correspondence has been improved comparing to that of the axial motion model without the radiance-irradiance relation.

  • PDF

Generation of Fixed Spectral Basis for Three-Dimensional Mesh Coding Using Dual Graph

  • Kim Sung-Yeol;Yoon Seung-Uk;Ho Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.137-142
    • /
    • 2004
  • In this paper, we propose a new scheme for geometry coding of three-dimensional (3-D) mesh models using a fixed spectral basis. In order to code the mesh geometry information, we generate a fixed spectral basis using the dual graph derived from the 3-D mesh topology. After we partition a 3-D mesh model into several independent sub-meshes to reduce coding complexity, the mesh geometry information is projected onto the generated orthonormal bases which are the eigenvectors of the Laplacian matrix of the 3-D mesh. Finally, spectral coefficients are coded by a quantizer and a variable length coder. The proposed scheme can not only overcome difficulty of generating a fixed spectral basis, but also reduce coding complexity. Moreover, we can provide an efficient multi-resolution representation of 3-D meshes.

  • PDF

Improving the Three-Dimensional Printability of Potato Starch Loaded onto Food Ink

  • Yourim Oh;Seungmin Lee;Nam Keun Lee;Jin-Kyu Rhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.891-901
    • /
    • 2024
  • This study focuses on improving the 3D printability of pea protein with the help of food inks designed for jet-type 3D printers. Initially, the food ink base was formulated using nanocellulose-alginate with a gradient of native potato starch and its 3D printability was evaluated. The 3D-printed structures using only candidates for the food ink base formulated with or without potato starch exhibited dimensional accuracy exceeding 95% on both the X and Y axes. However, the accuracy of stacking on the Z-axis was significantly affected by the ink composition. Food ink with 1% potato starch closely matched the CAD design, with an accuracy of approximately 99% on the Z-axis. Potato starch enhanced the stacking of 3D-printed structures by improving the electrostatic repulsion, viscoelasticity, and thixotropic behavior of the food ink base. The 3D printability of pea protein was evaluated using the selected food ink base, showing a 46% improvement in dimensional accuracy on the Z-axis compared to the control group printed with a food ink base lacking potato starch. These findings suggest that starch can serve as an additive support for high-resolution 3D jet-type printing of food ink material.

Numerical Experiment on Sea Prince Oil Spill Incident Using a High Resolution Ocean Circulation Model (고해상도 해양순환모형을 이용한 씨프린스호 유류유출 사고 수치실험)

  • Kim, Ye-Sol;Lee, Ho-Jin;Jung, Kyung-Tae;Park, Jae-Hun;Lee, Hyun-Jung
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigates the effects of tide, wind and oceanic currents on oil spill dispersions through a series of numerical floats tracking experiments on the Sea Prince oil spill incident occurred in 1995 using a 3-dimensional high resolution ocean circulation model. For that, a total of four experimental cases (experiment with tide, wind and oceanic currents, experiment with tide and oceanic currents, experiment with wind and oceanic currents, and experiment with tide and wind) were compared. It could be seen that results from experiment involving all external forces showed better agreement with the observed pattern of oil slick movement than other cases. The oceanic currents acted to drive floats to move to the western channel of the Korea straits and wind accelerated the eastward movement of floats in the early stage of the incident. Tidal currents played significant role in the horizontal dispersion of floats.

Construction and performance evaluation of a medium energy ion scattering spectroscopy system (중 에너지 이온산란 분광장치의 제작 및 성능 평가)

  • 김현경;문대원;김영필;이재철;강희재
    • Journal of the Korean Vacuum Society
    • /
    • 제6권1호
    • /
    • pp.97-102
    • /
    • 1997
  • A medium energy ion scattering spectroscopy(ME1S) system has been developed and tested.In the MEIS system a toroidal electrostatic energy analyzer(TEA) and a two dimensional position sensitivedetector(PSD) were used. The energy resolution of MEIS system was estimated to be less than $4\times 10^{-3}$ and the overall angular resolution was less than 0.3". From the MEIS spectrum of $Ta_2O_5$(300 $\AA$)/ onSi analyzedousing 60 keV $H^+$, the energy loss factor(S.1 and depth resolution were estimated to he 42 eV/$\AA$ and 9.7 $\AA$, respectively. Also Si(100) surface was analyzed using the MEIS system. A random MElSspectrum was obtained from thc Si(100) covered with native oxide layers. At the double alignment condition, MElS spectrum showed ;i Si surface peak, a oxygen peak and a carbon peak.nd a carbon peak.

  • PDF

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제22권6호
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

Robust Optical Flow Detection Using 2D Histogram with Variable Resolution (가변 분해능을 가진 2차원 히스토그램을 이용한 강건한 광류검출)

  • CHON Jaechoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제23권1호
    • /
    • pp.49-57
    • /
    • 2005
  • The proposed algorithm is to achieve the robust optical flow detection which is applicable for the case that the outlier rate is over 80%. If the outlier rate of optical flows is over 30%, the discrimination between the inliers and outlier with the conventional algorithm is very difficult. The proposed algorithm is to overcome such difficulty with three steps of grouping algorithm; 1) constructing the 2D histogram with two axies of the lengths and the directions of optical flows. 2) sorting the number of optical flows in each bin of the two-dimensional histogram in the descending order and removing some bins with lower number of optical flows than threshold. 3) increasing the resolution of the two-dimensional histogram if the number of optical flows in a specific bin is over 20% and decreasing the resolution if the number of optical flows is less than 10%. Such processing is repeated until the number of optical flows falls into the range of 10%-20% in all the bins. The proposed algorithm works well on the different kinds of images with many of wrong optical flows. Experimental results are included.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.