• Title/Summary/Keyword: 3-Dimensional Node Allocation

Search Result 5, Processing Time 0.02 seconds

A Study on Localization System using 3D Triangulation Algorithm based on Dynamic Allocation of Beacon Node (비컨노드의 동적배치 기반 3차원 삼각측량 알고리즘을 적용한 위치인식 시스템에 대한 연구)

  • Lee, Ho-Cheol;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.378-385
    • /
    • 2011
  • The three-dimensional triangulation algorithm that the beacon nodes can be allocated to dynamically in not the experimental region but the practical region is suggested, and the performance of the localization system adapting the suggested algorithm is analyzed. The suggested algorithm adapts the computation method of the three dimensional point that the surfaces of three spheres overlapped, while the traditional triangulation algorithm adapts the computation method of the two dimensional point that three circles are overlapped in order to compute the distance between beacon nodes and mobile node that means a radius. In addition to this, to analyze the performance of the localization system adapting the suggested algorithm, first of all, the allocation layout of beacon nodes is made, and the allocation layout is modeled by selection of ten random distance values between mobile node and beacon nodes for computer simulation of the practical model. Next, the two dimensional coordinator of mobile node that is calculated by the suggested algorithm and the traditional triangulation algorithm is compared with each other. The localization measuring performance about three dimensional coordinator(z axis) of the suggested algorithm is also obtained by comparing with that of the practical model.

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

Multi-Dimensional Vector Approximation Tree with Dynamic Bit Allocation (동적 비트 할당을 통한 다차원 벡터 근사 트리)

  • 복경수;허정필;유재수
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.81-90
    • /
    • 2004
  • Recently, It has been increased to use a multi-dimensional data in various applications with a rapid growth of the computing environment. In this paper, we propose the vector approximate tree for content-based retrieval of multi-dimensional data. The proposed index structure reduces the depth of tree by storing the many region information in a node because of representing region information using space partition based method and vector approximation method. Also it efficiently handles 'dimensionality curse' that causes a problem of multi-dimensional index structure by assigning the multi-dimensional data space to dynamic bit. And it provides the more correct regions by representing the child region information as the parent region information relatively. We show that our index structure outperforms the existing index structure by various experimental evaluations.

  • PDF

Grid-Based Key Pre-Distribution in Wireless Sensor Networks

  • Mohaisen, Abedelaziz;Nyang, Dae-Hun;Maeng, Young-Jae;Lee, Kyung-Hee;Hong, Do-Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.195-208
    • /
    • 2009
  • In this paper, we introduce a grid-based key pre-distribution scheme in wireless sensor networks, which aims to improve the connectivity and resiliency while maintaining a reasonable overhead. We consider simplification of the key establishment logic and enhancement of the connectivity via plat polynomial assignment on a three-dimensional grid for node allocation and keying material assignment. We demonstrate that our scheme results in improvements via a detailed discussion on the connectivity, resource usage, security features and resiliency. A comparison with other relevant works from the literature along with a demonstrated implementation on typical sensor nodes shows the feasibility of the introduced scheme and its applicability for large networks.

A Distributed address allocation scheme based on three-dimensional coordinate for efficient routing in WBAN (WBAN 환경에서 효율적인 라우팅을 위한 3차원 좌표 주소할당 기법의 적용)

  • Lee, Jun-Hyuk
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.663-673
    • /
    • 2014
  • The WBAN technology means a short distance wireless network which provides each device interactive communication by connecting devices inside and outside of body. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. Wireless body area network is usually configured in energy efficient using sensor and zigbee device due to the power limitation and the characteristics of human body. Wireless sensor network consist of sensor field and sink node. Sensor field are composed a lot of sensor node and sink node collect sensing data. Wireless sensor network has capacity of the self constitution by protocol where placed in large area without fixed position. In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in WBAN environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. Therefore proposing x, y and z coordinate axes from divided address space of 16 bit to solve this problems. Each node was reduced not only bitwise but also multi hop using the coordinate axes while routing than Cskip algorithm. I compared the performance between the standard and the proposed mechanism through the numerical analysis. Simulation verified performance about decrease averaging multi hop count that compare proposing algorithm and another. The numerical analysis results show that proposed algorithm reduced the multi hop better than ZigBee distributed address assignment