• Title/Summary/Keyword: 3-Dimensional Measurement

Search Result 1,256, Processing Time 0.027 seconds

Accuracy Improvement of Breast Volume Estimation Using Length Parameters of Breast (유방에 대한 길이 파라미터를 이용한 3차원 유방 부피의 예측 개선)

  • Lee, Hyun-Young;Hong, Kyung-Hi
    • The Research Journal of the Costume Culture
    • /
    • v.14 no.5
    • /
    • pp.840-849
    • /
    • 2006
  • Breast volume has been approximately estimated under the assumption that the shape of breast is a corn. However, women's breast is more like a bulged bag in reality. In this paper, three methods of breast volume estimation were compared to find out the more accurate method. The shape of the breast is assumed as a hemisphere in the first estimation method and a corn in the second one. In the third method, arc along the cross sectional shape of breast was utilized in the calculation. Comparisons among the methods were made using the actual 3D volume measurement of thirty seven women's breast. As results, the third method was the best one for the normal breast type, especially for the lower part of the breast ($R^2=0.74$) which is the crucial design parameter of the brassiere. Assumption of the shape of breast as a corn was reasonably acceptable when the breast is sagged. It was expected that when women wore brassiere, the accuracy of the third method would increase more, since the shape of breast becomes more symmetrical.

  • PDF

Classification of Head Shape and 3-dimensional analysis for Korean Men (성인 남성 머리와 얼굴 부위의 형태분류와 3차원적 분석)

  • Choi, Young-Lim;Kim, Jae-Seung;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.12 no.6
    • /
    • pp.812-820
    • /
    • 2010
  • The objectives of this study were to classify the head shapes of Korean men and to suggest computer tomography as a new body measurement method. The 23 head measurement items of 760 men, aged more than 18 in Sizekorea 2004 database were used to analyze, measured by using statistical methods. Factor analysis, cluster analysis and duncan test were performed using these data. Through factor analysis, 5 factors were extracted upon factor scores and those factors comprised 70.91% for the total variances. The head and face shapes were categorized as 5 types-triangle, round, oval, long, rectangle. We decided for the type 1(triangle) to standard head shape since this type was the most observed. 21 participants were measured using computed tomography(CT). The measured data of skin and skeleton and the standard head shapes were illustrated.

Incoherent Inverse Scattering of 3-Dimensional Underground Cavity in Lossy Medium (손실 매질내에 있는 3차원 지하공동의 Incoherent 역산란)

  • 홍성용;강진섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.378-391
    • /
    • 1999
  • When the time-harmonic plane wave is incident upon a high-contrast spherical cavity in a lossy medium, the incoherent shadow intensity pattern is acquired by averaging out the multi-frequency intensities of the co-polarized total electric field calculated at the measurement plane perpendicular to the propagating direction of the incident wave in the forward direction. In the spherical rotational measurement configuration, an incoherent imaging of the spherical cavity is obtained via the back-projections of the incoherent shadow intensity pattern. This imaging method is validated by imaging an air sphere in the lossy medium of ${\epsilon}_r$ = 2 and $\sigma$ = 0.001, 0.003 S/m and the conditions for obtaining better images are investigated.

  • PDF

A Simulation Based Assessment for Evaluating the Effectiveness of Quasi-Zenith Satellite System

  • Suh, Yong-Cheol;Shibasaki, Ryosuke
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.181-190
    • /
    • 2003
  • Since the operation of the first satellite-based navigation service, satellite positioning has played an increasing role in both surveying and geodesy, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with CPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the CPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-dimensional digital map. Through this developed simulation system, it is possible to calculate the number of simultaneously visible satellites and available area for positioning without the need of actual observation. Furthermore, this system can calculate the Dilution Of Precision (DOP) and the error distribution.

Effect of 1-RM Direct Measurement Method on Beginners' Back Squat (1-RM 직접측정법이 초보자의 백스쿼트에 미치는 영향 )

  • Jaeho, Kim;Sukhoon, Yoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.134-140
    • /
    • 2022
  • Objective: This study aims to verify effect of 1-RM direct measurement method of back squat on beginners. Method: Total of 8 healthy adults were recruited for this study (age: 29 ± 3.81 yrs., height: 174 ± 3.83 cm., body mass: 74 ± 11.63 kg., 1RM: 96 ± 19.78 kg). All participants performed the back squat with 80%, 90% and 100% of the pre-measured 1RM. A three-dimensional motion analysis was performed with 8 infrared cameras and 3 channels of EMG were used for this study. One-way ANOVA with repeated measure was used for the statistical analysis with the significant level set to α=.05. Results: The ankle joint ROM in the transverse plane was significantly increased as the weight increased during the concentric contraction phase 2 (p < .05). In addition, the erector spinae and the gluteus maximus, which are synergist for the motion, showed a significant difference according to the increased weight (p < .05). Conclusion: Our results revealed that beginners increase potential dynamic knee valgus as weight increased. Therefore, it is thought that field coaches should pay attention to this to minimize and prevent injuries when measuring 1-RM for beginners.

Biomechanical Effectiveness and Anthropometric Design Aspects of 3-dimensional Contoured Pillow

  • Kim, Jong Hyun;Won, Byeong Hee;Sim, Woo Sang;Jang, Kyung Seok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.503-517
    • /
    • 2016
  • Objective: The aim of this study was to evaluate the effectiveness of 3 dimensional contoured pillow through analyzing contact pressure and to suggest its design guidelines through analyzing the posture of head and neck area. Background: The quality of sleep is a very important factor closely related with human's health. To improve the quality of sleep, the verification of design factors affecting the posture of the head and neck is needed, and a pillow design that can induce proper posture is required. Method: This study measured the contact pressures of the two reference groups (bead and cotton pillows) as a method to evaluate the design effectiveness of the contoured pillow. This study proposed 3-dimensional design guidelines by drawing anthropometry (head length) affecting cervical curvature angle (CCA) through the measurement of the participants' cervical curvature angles. Results: In the design effectiveness evaluation, the contact pressure of cervical region was higher than that of a reference group (cotton pillow), and contract area increased, and contract pressure decreased in the shape distributing the occipital region's body pressure. This study proposed pillow's cervical supporting height by percentile of a head length [head length (%tile) (cervical supporting height) affecting the posture of the head and neck: 14.6cm (5%tile) (6.2cm), 15.5cm (25%tile) (6.7cm), 16.4cm (50%tile) (7.1cm), and 19.3cm (75%tile) (8.9cm)]. Conclusion: This study confirmed the contoured pillow's design effectiveness maintaining cervical angle comfortable to sleep with the shape supporting the cervical vertebrae and by reducing the contact load of the occipital region. Also, this study proposed pillow design guidelines based on the 3-dimensional contoured pillow design effectiveness, through which the study laid the foundation for pillow design in a systematic method. Application: The results of this study are expected to be utilized as the basis data by which the optimum pillow type and pillow design according to main percentile can be standardized.

Shape, Volume Prediction Modeling and Identical Weights Cutting for Frozen Fishes (동결생선의 외형과 부피 예측 모델링 및 정중량 절단)

  • Hyun, Soo-Hwan;Lee, Sung-Choon;Kim, Kyung-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • This paper suggests a modeling technique for shape and volume prediction of fishes to cut them with identical weights for group meals. The measurement and prediction of frozen fishes for group meals are very difficult because they have a bending deformation occurring at frozen stage and a hollow by eliminating the internals. Besides there exist twinkles problem of surface caused by freeze and variable weights by moisture conditions. Therefore a complex estimation algorithm is necessary to predict the shape and volume prediction of fishes exactly. Hollow prediction, pattern classification and modeling for tails using neural network, integration based volume prediction algorithm are suggested and combined to solve those problems. In order to validate the proposed method, the experiments of 3-dimensional measurement, volume prediction and fish cutting for spanish mackerel, saury, and mackerel are executed. The cutting experiments for real fish are executed.

Inter- and Intra-Observer Variability of the Volume of Cervical Ossification of the Posterior Longitudinal Ligament Using Medical Image Processing Software

  • Shin, Dong Ah;Ji, Gyu Yeul;Oh, Chang Hyun;Kim, Keung Nyun;Yoon, Do Heum;Shin, Hyunchul
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • Objective : Computed tomography (CT)-based method of three dimensional (3D) analysis ($MIMICS^{(R)}$, Materialise, Leuven, Belgium) is reported as very useful software for evaluation of OPLL, but its reliability and reproducibility are obscure. This study was conducted to evaluate the accuracy of $MIMICS^{(R)}$ system, and inter- and intra-observer reliability in the measurement of OPLL. Methods : Three neurosurgeons independently analyzed the randomly selected 10 OPLL cases with medical image processing software ($MIMICS^{(R)}$) which create 3D model with Digital Imaging and Communication in Medicine (DICOM) data from CT images after brief explanation was given to examiners before the image construction steps. To assess the reliability of inter- and intra-examiner intraclass correlation coefficient (ICC), 3 examiners measured 4 parameters (volume, length, width, and length) in 10 cases 2 times with 1-week interval. Results : The inter-examiner ICCs among 3 examiners were 0.996 (95% confidence interval [CI], 0.987-0.999) for volume measurement, 0.973 (95% CI, 0.907-0.978) for thickness, 0.969 (95% CI, 0.895-0.993) for width, and 0.995 (95% CI, 0.983-0.999) for length. The intra-examiner ICCs were 0.994 (range, 0.991-0.996) for volume, 0.996 (range, 0.944-0.998) for length, 0.930 (range, 0.873-0.947) for width, and 0.987 (range, 0.985-0.995) for length. Conclusion : The medical image processing software ($MIMICS^{(R)}$) provided detailed quantification OPLL volume with minimal error of inter- and intra-observer reliability in the measurement of OPLL.

Development of Wireless Ambulatory Measurement System based on Inertial Sensors for Gait Analysis and its Application for Diagnosis on Elderly People with Diabetes Mellitus (관성센서 기반의 무선보행측정시스템 개발 및 노인 당뇨 환자 보행 진단에의 응용)

  • Jung, Ji-Yong;Yang, Yoon-Seok;Won, Yong-Gwan;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.38-46
    • /
    • 2011
  • 3D motion analysis system which is currently widely used for walking analysis has limitations due to both necessity of wide space for many cameras for measurement, high cost, and complicated preparation procedure, which results in low accessability in use and application for clinical diagnosis. To resolve this problem, we developed 3-dimensional wireless ambulatory measurement system based on inertial sensor which can be easily applicable for clinical diagnosis for lower extremity deformity and developed system was evaluated by applying for 10 elderly people with diabetes mellitus. Developed system was composed of wireless ambulatory measurement module that consists of inertial measurement unit (IMU) which measures the gait characteristics, microcontroller which collects and precesses the inertial data, bluetooth device which transfers the measured data to PC and Window's application for storing and processing and analyzing received data. This system will utilize not only to measure lower extremity (foot) problem conveniently in clinical medicine but also to analyze 3D motion of human in other areas as sports science, rehabilitation.

An Efficient Algorithm for 3-D Range Measurement using Disparity of Stereoscopic Camera (스테레오 카메라의 양안 시차를 이용한 거리 계측의 고속 연산 알고리즘)

  • 김재한
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1163-1168
    • /
    • 2001
  • The ranging systems measure range data in three-dimensional coordinate from target surface. These non-contact remote ranging systems is widely used in various automation applications, including military equipment, construction field, navigation, inspection, assembly, and robot vision. The active ranging systems using time of flight technique or light pattern illumination technique are complex and expensive, the passive systems based on stereo or focusing principle are time-consuming. The proposed algorithm, that is based on cross correlation of projection profile of vertical edge, provides advantages of fast and simple operation in the range acquisition. The results of experiment show the effectiveness of the proposed algorithm.

  • PDF