• 제목/요약/키워드: 3-Dimensional Flow Field

검색결과 477건 처리시간 0.026초

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

오목면 및 볼록면에 존재하는 난류경계층유동과 경사지게 분사되는 난류제트의 유동특성 (Flow Characteristics of Inclined Turbulent Jet Issuing into Turbulent Boundary Layer Developing on Concave and Convex Surfaces)

  • 이상우;이준식;이택식
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.302-312
    • /
    • 1992
  • Three dimensional velocity measurements of a 35.deg. inclined jet issuing into turbulent boundary layer on both concave and convex surfaces have been conducted. To investigate solely the effect of each curvature on the flow field, streamwise pressure variations are minimized by adjusting the shape of the opposite wall in the curved region. From the measured velocity components, streamwise mean vorticities are calculated to determine jet-crossflow interface. The results on convex surface show that the injected jet is separated from the wall and the bound vortex maintains its structure far downstream. On concave surface, the secondary flow in the jet cross-sections are enhanced and in some downstream region from the jet exit, the flow on the concave surface has been developed to Taylor-Gortler vortices

Aeroelastic stability analysis of a bridge deck with added vanes using a discrete vortex method

  • Taylor, I.;Vezza, M.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.277-290
    • /
    • 2002
  • A two dimensional discrete vortex method (DIVEX) has been developed at the Department of Aerospace Engineering, University of Glasgow, to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The results from both the static and flutter analysis of the main deck in isolation are in good agreement with experimental data. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results confirm previous analytical and experimental studies. The aeroelastic study is carried out firstly using aerodynamic derivatives extracted from the DIVEX simulations. These results are then assessed further by presenting results from full time-dependent aeroelastic solutions for the original deck and one of the vane cases. In general, the results show good qualitative and quantitative agreement with results from experimental data and demonstrate that DIVEX is a useful design tool in the field of wind engineering.

소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV)

  • 류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.413-422
    • /
    • 2012
  • 덕티드팬을 추진 장치로 사용하는 소형 무인항공기는 도심 및 협소한 공간에서 정찰 및 감시에 사용 가능하며, 프로펠러에 비해 높은 추진 효율과 추력 특성을 나타낸다. 덕티드팬 무인항공기의 운용 거리와 비행 시간을 증가시키기 위해서는 정지 비행 및 전진 비행시의 추력 특성연구가 중요하며 비행 안정성 확보를 위해서는 비정상 3차원 유동 특성 연구가 필수적이다. 본 연구에서는 동익과 정익으로 구성된 덕티드팬의 설계 결과 검증과 안정적인 비행 특성을 확인하기 위해 덕티드팬의 추력 특성과 비정상 3차원 유동장을 계측하였다. 덕티드팬의 정지 및 전진 비행시의 추력 특성은 소형 아음속 풍동의 6분력 밸런스 시스템을 이용하여 측정되었고, 비정상 3차원 유동장은 $45^{\circ}$ 경사열선의 프로브 고정법에 의해 분석되었다. 덕티드팬의 덕트와 정익이 추력특성에 다소 큰 영향을 미치며, 정익에 의해 덕티드팬의 안정적인 비행이 가능함을 확인하였다.

스월이 있는 3차원 모델 연소기 내의 연소특성 (Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow)

  • 김만영
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

마이크로 홀로그래픽 PTV를 이용한 미세곡관 내부 Dean 유동의 3차원 유동해석 (Micro Holographic PTV Analysis of Three-dimensional Dean Flows in a Curved Micro-tube)

  • 김석;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.689-690
    • /
    • 2008
  • In the present study, a micro holographic PTV (HPTV) system was used to experimentally investigate the structure of 3D flow within a curved micro-tube with varying Dean number. The employed HPTV system incorporated a high-speed digital camera to measure the temporal evolution of the 3D velocity fields of micro-scale fluid flows. With increasing Dean number, flow in the curved tube is transformed from a steady flow to a secondary flow with two counter-rotating vortices. In this study, to analyze the 3D flow characteristics in the curved section of tube at a high Dean number, the trajectories of fluid particles were obtained experimentally using the whole 3D velocity field data obtained by the micro HPTV technique. The mean velocity field distribution was then obtained by ensemble averaging the instantaneous velocity fields. These results would be helpful in the design of various passages within micro-scale devices or micro-chips and in understanding the mixing phenomena that occur in curved conduits along the trajectories of fluid particles.

  • PDF

olaFLOW를 활용한 투과성잠제에 의한 3차원적 파-흐름의 수치시뮬레이션 (Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW)

  • 이광호;배주현;안성욱;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제30권4호
    • /
    • pp.166-179
    • /
    • 2018
  • 본 연구는 파-흐름의 공존장에 설치된 3차원투과성잠제에 관해 흐름방향에 따라 변화되는 잠제 주변에서 파고분포와 같은 수면변동의 특성 및 설상사주의 주요외력으로 작용하는 평균유속, 연안류 및 난류운동에너지 등을 포함한 유속장의 특성을 수치적으로 검토하였다. 수치해석에는 오픈소스 CFD 코드인 olaFlow를 적용하였으며, 대상파랑은 규칙파와 불규칙파로 하였다. 수치해석결과로부터 흐름방향(순방향과 역방향)에 따른 잠제 제간부 배후에서 파고변화는 난류운동에너지와 밀접한 관계를 가지며, 흐름이 존재하는 경우는 흐름이 없는 경우보다 약한 연안류가 형성됨과 동시에 수송유량이 감소되는 것을 확인할 수 있었다. 이로부터 흐름의 유무 및 방향이 잠제 배후에 형성되는 설상사주의 형성과정에 미치는 영향을 파악할 수 있었다.

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1813-1818
    • /
    • 2004
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isotropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

  • PDF

3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 - (Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down -)

  • 양장식
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

디지털 Micro Holographic PTV기법을 이용한 미세 곡관 내부 3차원 유동 측정 (Measurement of 3-D Flow inside a Micro Curved-tube using Digital Micro Holographic Particle Tracking Velocimetry)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2579-2584
    • /
    • 2007
  • A digital micro holographic particle tracking velocimetry (HPTV) system consisting of a high-speed camera and a single laser with acoustic optical modulator (AOM) chopper was established. The digital micro HPTV system was applied to water flow in a micro curved-tube for measuring instantaneous 3-D velocity field data consecutively. The micro curved-tube is using to reproduce the dorsal aorta or utilize in various lap-on-a-chip. The temporal evolution of a three-dimensional water flow in the micro curved-tube (the curvature, ${\kappa}$=1/${\phi}$, 2/${\phi}$, 4/${\phi}$, 8/${\phi}$) of 100 ${\mu}m$ and 300 ${\mu}m$ inner diameters was obtained and mean velocity field distribution was obtained by statistical-averaging the instantaneous velocity fields.

  • PDF