• Title/Summary/Keyword: 3-Dimension Location Coordinate

Search Result 5, Processing Time 0.023 seconds

A Study on the 3D Location Estimation in 2.45GHz Band RTLS (2.45GHz 대역 RTLS에서 3차원 위치추정에 관한 연구)

  • Jeong Seung-Hee;Lee Hyun-Jae;Oh Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.957-960
    • /
    • 2006
  • In this paper, we studied the location estimation algorithm of a spatial 3 dimension which extend the location estimation algorithm of a plane 2 dimension in 2.45GHz band RTLS(Real time location system). We used TDOA scheme which need not a time of transmission information of the tag and estimated 3 dimension coordinates. Also, estimated intersection of hyperbolic curve to X, Y coordinate of the tag at 2D coordinates searching area, $300m\times300m$ and LOS propagation environments. And, we estimated Z coordinate ultimately using X, Y coordinate. The location estimation algorithm of a spatial 3 dimension satisfies the RTLS specification requirement, 3m radius accuracy. From the result, we confirm that the location of tag which similar to actual coordinate in the case to an ideal received offset. However, we verified that the location of tag which escapes from a radius 3m within error range when received offset increased. Therefore, as the future work we are consider enhanced location accuracy of a spatial 3 dimension in RTLS system which using the decrease scheme of reader offset or the discriminate scheme of the estimation location.

  • PDF

A Development of Object Shape Recognition Module using Laser Sensor (레이저 센서를 이용한 물체의 형상인식 모듈 개발)

  • Kwak, Sung-Hwan;Lee, Seung-Kyu;Lee, Seung-Jae;Oh, Kyu-Hyun;Kim, Young-Sik;Choi, Joong-Koung;Park, Mu-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1923-1932
    • /
    • 2008
  • In this paper, We suggest a method, which extract the 3-Dimension location coordinate of object, stat and coil, using Laser sensor. In order to extract the 3-Dimension location coordinate of object, First, we extract the edge of object. Second, extract the z-axis angle of Laser sensor. Third, extract the 2-Dimension location coordinate of object using edge of object and z-axis of Laser senor. Fourth, discriminate between Slat and Coil. The result of study is expected that the help which is considerable to the automation system development of unmanned transportation equipment will become.

A Study on 3D-Coordinate Extraction of Structure by Using The Digital Camera (디지털 카메라를 이용한 구조물의 3차원 좌표 추출에 관한 연구)

  • Kim, Kam-Lae;Kim, Hak-Joon;Park, Yong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.219-224
    • /
    • 2003
  • Recently, the number of the use of Digital Photogrammetry is increasing, the Digital Photogrammetry is used for the acquisition of images, remote sensing and three dimension location. Especially, the three dimension location is more activated to use digital camera for the Digital Photogrammetry. The reason is that it is cheap and easy to use and also it has high confidence. Using non-metric digital camera not metric camera, in this research, to get images and apply the images to the Direct Liner Transformation which is one of the techniques in Digital Photogrammetry to get three dimensional location of a point. Ⅰ programmed the procedure with Visual C++ to get the position of points speedly and I tested possibility whether it can analyze the displacement and the existence of structure with measurement system which is structured by a inexpensive non-metric digital camera.

  • PDF

3dimension Topography Generation and Accuracy Analysis Using GIS (GIS를 이용한 3차원 지형도 생성 및 정확도 분석)

  • Nim Young Bin;Park Chang suk;Lee Cheol Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.189-196
    • /
    • 2005
  • Recently as map making skills developed and as digital maps prevailed, peoples began to take interest in the realistic 3dimension topography rather than the flat 2 dimension one. The experiment is done by using the topographical information from the digital maps, To analyze the preciseness of this 3dimension topography, analysis of the coordinate-changed standard map image and the location errors of the plane and height from digital values of the map's topography by layers and features, were done. The visual results of locational values differed by every programs of coordinate transformation. Errors of locations also appeared from the methods of correcting the visual sources, when deciding the standard source's datum point. The plan's accuracy of the image data coordinate transformation is about ${\pm}4.1m$. In ground distance, therefore, it is included in the allowed error of the 1:25,000 scale changed map, satisfying the plan's accuracy. Also, by the use of reasonably spaced grid, it satisfied the visual topographical accuracy. Because the 3 dimension topographical map can be produced effectively and rapidly by using various scale's standard map image and the digital map, the further practical use of 3 dimension topographic map made by using the existing topographies and changed maps has high expectations.

Extraction of Object 3-Dimension Position Coordinates using CCD-Camera (CCD-Camera를 이용한 목적대상의 3차원 위치좌표 추출)

  • Kim, Moo-Hyun;Lee, Ji-Hyun;Kim, Young-Hee;Park, Mu-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.245-249
    • /
    • 2010
  • In the stereo vision system, information about an object could be gained by searching through images. Edges which are based on the information about an object are used to find the position of the object and send a message of its position coordinate to a unmanned crain. This thesis proposes an algorithm to find the center point of the object's surface which is connected to the unmanned crain's arm, and to recognize the shape of the object by using two CCD cameras. At first, getting information about the edges, and distinguishing each edge's characteristics depend on user's option, and then find the location information by a set of positions that are proposed. This thesis is expected to be devoted to the development of an automation system of unmanned moving equipment.

  • PDF