• Title/Summary/Keyword: 3-D weave

Search Result 22, Processing Time 0.029 seconds

A Study on Making Fabric Images According to Fancy Yarn Structures Using the Computer (컴퓨터를 이용한 장식사의 구조 요인에 따른 직물이미지 제작에 관한 연구)

  • Sul, Jung-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Fancy Yarn has developed diverse textures in fabrics, reducing the time in yarn and fabric production or apparel making in order to develop creative goods. In this study aimed to propose the use of a 4D box system to make fancy yarn shapes with loops, knops and spirals and the like. The change in texture was analysed and simulated to produce a suitable fabric image by using the fancy yarns fabric. The results are as follows. The plain weave, 2/2 basket weave, 2/2 twill weave, 2/2 2 complete broken weaves, and 5 harness sateen weaves were woven and a fabric image formed. In the case of the loop and the knop yarns fabric image, compared to the twisted fabric image the surface was covered by loops or some parts became partially black. In the case of the spiral shape it showed pattern continuity in spiral shapes 1, 2 and 3. The more twisted spirals produced a diamond shaped pattern or a twill line and a herring bone shaped twill line. An evenly distributed black fabric image appeared in 5 harness sateen weave. For the loop shape the broken weave or 5 harness sateen weave was produced; basket weave and broken weave for the knop yarn 1 or knop yarn 2; and for the spiral shape a plain fabric or 5 harness sateen weave were produced much similar to the fabric image. The surface texture of the mapped image compared to the twisted fabric image produces fancy yarn fabric images covered with loops or irregular spots caused by the knop and the spiral. Therefore it is appropriate or suitable for the simulation of tweed or woolen wool fabrics. The fabric image which produced consistent and continuous lines is therefore more suitable for simulations of twill or herringbone fabric images.

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Three-dimensional Reconstruction of Textile Structure Using Discrete Cross Sectional Images to Analyze Fabric Weave Structure

  • Shinohara, Toshihiro;Takayama, Jun-Ya;Ohyama, Shinji;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.35.1-35
    • /
    • 2001
  • The aim of our study is to automatically analyze how textile is woven which has complicated structure, such as textile with multi-layer structure. For this purpose, we propose a method to reconstruct a textile structure of a textile is visualized. Then, the anteroposterior sections of the same yarn on the cross sectional images is associated each other by superimposing them. Therefore, by this method, 3-D information of each yarn is obtained and the 3-D shape of each yarn is independently expressed. In this research, a 3-D reconstruction of a plain weave fabric is performed.

  • PDF

Study on the Textile Structural Design using SLS 3D Printing Technology -Focused on Design of Flexible Woven Fabric Structure- (SLS 방식의 3D 프린팅 기술을 활용한 직물구조적인 디자인설계 연구 -유연성 있는 직조구조 직물설계를 중심으로-)

  • Song, HaYoung
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.67-84
    • /
    • 2019
  • Since the early 2000s, various fashion design products that use 3D printing technology have constantly been introduced to the fashion industry. However, given the nature of 3D printing technology, the flexible characteristics of material of textile fabrics is yet to be achieved. The aim of this study is to develop the optimal design conditions for production of flexible and elastic 3D printing fabric structure based on plain weave, which is the basic structure in fabric weaving using SLS 3D printing technology. As a the result this study aims to utilize appropriate design conditions as basic data for future study of flexible fashion product design such as textile material. Weaving structural design using 3D printing is based on the basic plain weave, and the warp & weft thickness of 4mm, 3mm, 2mm, 1.5mm, 1mm, and 0.7mm as expressed in Rhino 6.0 CAD software program for making a 3D model of size $1800mm{\times}180mm$ each. The completed 3D digital design work was then applied to the EOS SLS Machine through Maker ware, a program for 3D printer output, using polyamide 12 material which has a rigid durability strength, and the final results obtained through bending flexibility tests. In conclusion, when designing the fabric structure design in 3D printing using SLS method through application of polyamide 12 material, the thickness of 1 mm presented the optimal condition in order to design a durable digital textile structure with flexibility and elasticity of the 3D printing result.

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Impact Properties of 2D and 3D Textile Composites (2D 및 3D 직조형 복합재료의 충격특성)

  • Byun, Joon-Hyung;Um, Moon-Kwang;Hwang, Byung-Sun;Song, Seung-Wook;Kang, Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.91-94
    • /
    • 2003
  • Laminated composites are liable to fatal damage under impact load due to the fact that they have no reinforcement in the thickness direction. To overcome the inherent weakness, three dimensional (3D) textile reinforcements have drawn much interests. In this paper, impact performance of 2D and 3D textile composites has been characterized. For 2D composites, fiber bundle size and fiber pattern have been varied. For 3D composites, orthogonal woven preforms of different density and type of through-thickness fibers have been studied. To assess the damage after the impact loading, specimens were subjected to C-scan nondestuctive inspection. Compression after impact (CAI) were also conducted in order to evaluate residual compressive strength.

  • PDF

Color Prediction of Yarn-dyed Woven Fabrics -Model Evaluation-

  • Chae, Youngjoo;Xin, John;Hua, Tao
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • The color appearance of a yarn-dyed woven fabric depends on the color of the yarn as well as on the weave structure. Predicting the final color appearance or formulating the recipe is a difficult task, considering the interference of colored yarns and structure variations. In a modern fabric design process, the intended color appearance is attained through a digital color methodology based on numerous color data and color mixing recipes (i.e., color prediction models, accumulated in CAD systems). For successful color reproduction, accurate color prediction models should be devised and equipped for the systems. In this study, the final colors of yarn-dyed woven fabrics were predicted using six geometric-color mixing models (i.e., simple K/S model, log K/S model, D-G model, S-N model, modified S-N model, and W-O model). The color differences between the measured and the predicted colors were calculated to evaluate the accuracy of various color models used for different weave structures. The log K/S model, D-G model, and W-O model were found to be more accurate in color prediction of the woven fabrics used. Among these three models, the W-O model was found to be the best one as it gave the least color difference between the measured and the predicted colors.

3D Weaving Process : Development of Near Net Shape Preforms and Verification of Mechanical Properties

  • Klapper, Vinzenz;Jo, Kwang-Hoon;Byun, Joon-Hyung;Song, Jung-Il;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.96-100
    • /
    • 2021
  • The lightweight industry continuously demands reliable near-net-shape fabrication where the preform just out-of-machine is close to the final shape. In this study, different half-finished preforms are made π-beams. Then the preforms are unfolded to make a 3D shape with integrated structure of fibers, providing easier handling in the further processing of composites. Several 3D textile preforms are made using weaving technique and are examined after resin infusion for mechanical properties such as inter-laminar shear strength, compressive strength and tensile strength. Considering that the time and labor are important parameters in modern production, 3D weaving technique reduces the manufacturing steps and therefore the costs, such as hand-lay up of textile layers, cutting, and converting into preform shape. Hence this 3D weaving technique offers many possibilities for new applications with efficient composite production.

Impact Properties of S-2 Glass Fiber Composites with Multi-axial Structure (다축 구조 S-2 유리섬유 복합재의 충격 특성)

  • Song, S.W.;Lee, C.H.;Byun, J.H.;Hwang, B.S.;Um, M.K.;Lee, S.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.71-75
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process have been utilized for providing through-thickness reinforcements. 2D preforms were stacked with S-2 glass plain weave and S-2 glass MWK (Multi-axial Warp Knit) L type. 3D preforms were fabricated using the stitching process. All composite samples were fabricated by RTM (Resin Transfer Molding) process. To examine the damage resistance performance the low speed drop weight impact test has been carried out. For the assessment of damage after the impact loading, specimens were examined by scanning image. CAI (Compressive After Impact) tests were also conducted to evaluate residual compressive strength. Compared with 2D composites, the damage area of 3D composites was reduced by 20-30% and the CAI strength showed 5-10% improvement.

  • PDF

Microstructure and Electromagnetic Characteristics of MWNT-filled Plain-Weave Glass/Epoxy Composites (다중벽 탄소나노튜브가 첨가된 평직 유리섬유/에폭시 복합재료의 미세구조 및 전자기적 특성)

  • Lee, Sang-Eui;Park, Ki-Yeon;Lee, Won-Jun;Kim, Chun-Gon;Han, Jae-Hung
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • MWNT(multi-walled carbon nanotube)-filled plain-weave glass/epoxy composites were fabricated and electromagnetic characteristics of the composites were investigated. The observation of the microstructures of the composites revealed that MWNTs are mostly distributed in matrix rich region and the interface between glass fiber yarns in warp and fill direction. The permittivity of the composites, measured in X-band (8.2-12.4 GHz) frequency range, increased with weight fraction of MWNTs and remained almost constant with frequency. The measured permittivity was used to investigate the reflection loss of radar absorbing structures (RAS) composed of MWNT-filled composites according to thickness and a RAS were constructed with 10 dB absorbing bandwidth 4.2 GHz and 3.3 mm in thickness.