• Title/Summary/Keyword: 3-D ray tracing method

Search Result 65, Processing Time 0.022 seconds

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • Ryu, Dong-Ok;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

Evaluation of Daylighting Performance and Design of a Curved-Lightshelf by the Ray Tracing Method (광선추적기법을 활용한 곡면형 광선반시스템 설계 및 채광성능 평가)

  • Kim, Dong-Su;Yoon, Jong-Ho;Shin, Woo-Chul;Lee, Kwang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.136-141
    • /
    • 2011
  • The lightshelf system reduces intense illumination levels of indoor from direct sun light and reflect to lead diffused light into indoor deeply. This study aims to design acurved-lightshelf by a ray tracing method and evaluate the daylighting performance of window integrated with the curved-lightshelf by computer simulations. For this purpose, evaluation test model was designed for the experiments to validate the simulation model, and the curved-lightshelf was designed by the ray tracing method using Ecotect. After the office model was designed using 3D simulation, the average indoor illuminance, luminance and distribution of illuminance were evaluated by simulation which has a algorithm of Radiosity and Ray-Tracing method under four different cases(case1;no lightshelf, case2; Flat board, case3; tilted at $30^{\circ}$ angle, case4; the curved-lightshelf). As results, it turns out that case1 showed higher average illuminance and case4 was more uniformly distributed than case2 and case3, In addition average luminance of case1 was also lower. indicating that the curved-lightshelf would reduce the possibility of the glare, while maintaining the sufficient daylight level.

A Deterministic Ray Tube Method for an Indoor Propagation Prediction Model

  • Suh, Choon-Gil;Koh, Hyung-Wha;Son, Hae-Won;Myung, Noh-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • This paper presents a new 3-D ray tracing technique based on the image theory with newly defined ray tubes. The proposed method can be applied to indoor environments with arbitrary building layouts and has high computational efficiency compared to the precedent methods resorting to the ray launching scheme. It predictions are in good agreement with the measurements.

  • PDF

A Deterministic Ray Tube Method for an Indoor Propagation Prediction Model

  • Son, Hae-Won;Myung, Noh-Hoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1067-1071
    • /
    • 2000
  • This paper presents a new 3-D ray tracing technique based on the image theory with newly defined ray tubes. The proposed method can be applied to indoor environments with arbitrary building layouts and has high computational efficiency compared to the precedent methods resorting to the ray launching scheme. Its predictions are in good agreement with the measurements

  • PDF

Bounding Box based Shadow Ray Culling Method for Real-Time Ray Tracer (실시간 광선추적기를 위한 바운딩 박스 기반의 그림자 검사 컬링 기법)

  • Kim, Sangduk;Kim, Jin-Woo;Park, Woo-Chan;Han, Tack-Don
    • Journal of Korea Game Society
    • /
    • v.13 no.3
    • /
    • pp.85-94
    • /
    • 2013
  • In this paper, we propose a scheme to reduce the number of shadow tests conducted during rendering of ray tracing. The shadow test is a very important process in ray tracing to generate photo-realistic images. In the rendering phase, the ray tracer determines whether to cull the shadow test based on information calculated from a shadow test conducted on the kd-tree in the preprocessing phase. In conventional rendering process, the proposed method can be used with little modification. The proposed method is suitable for a static scene, in which the geometry and light source does not change in the same manner as it does in the conventional method. The validity of the proposed scheme is verified and its performance is evaluated during cycle-accurate simulation. Through experiment results, we found that we could reduce up to 17% of the shadow test.

Effective Ray-tracing based Rendering Methods for Point Cloud Data in Mobile Environments (모바일 환경에서 점 구름 데이터에 대한 효과적인 광선 추적 기반 렌더링 기법)

  • Woong Seo;Youngwook Kim;Kiseo Park;Yerin Kim;Insung Ihm
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.93-103
    • /
    • 2023
  • The problem of reconstructing three-dimensional models of people and objects from color and depth images captured by low-cost RGB-D cameras has long been an active research area in computer graphics. Color and depth images captured by low-cost RGB-D cameras are represented as point clouds in three-dimensional space, which correspond to discrete values in a continuous three-dimensional space and require additional surface reconstruction compared to rendering using polygonal models. In this paper, we propose an effective ray-tracing based technique for visualizing point clouds rather than polygonal models. In particular, our method shows the possibility of an effective rendering method even in mobile environment which has limited performance due to processor heat and lack of battery.

Source Independent Subtree Ray Tracing Method for Wave Propagation Simulation in Urban Environment (도심 환경에서 전파 특성 모의 해석을 위한 신호 독립 부트리 방법에 대한 연구)

  • Kwon, Se-Woong;Moon, Hyun-Wook;Oh, Jae-Rim;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.301-306
    • /
    • 2010
  • In this paper, a SIT(Source Independent Tree) method for ray tracing is proposed to enhance the efficiency of tree construction with reuse of sub tree in urban environment, As the SIT method is applied, the decrease of the number of nodes for picocell and microcell simulations is 100 times. And 88~98 % of the total nodes are reused with change of location of signal source from an analysis of node reuse efficiency. Therefore the proposed SIT method is useful in performance enhancement of ray tracing, especially, for multiple antenna simulation like as MIMO system and cell planning.

A Hybrid Shadow Testing Scheme During Ray Tracing (광선추적 수행중 혼합 음영검사에 관한 연구)

  • Eo, Kil-Su;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 1989
  • This paper presents a new shadow testing acceleration scheme for ray tracing called Hybrid Shadow Testing (HST) based on a conditional switching between the conventinal shadow testing method and Crow's shadow volume method, where the shadow polygons as well as the object polygons are registered onto the corresponding cells under the 3-D space subdivision environment. Despite the preprocessing time for the generation and registration of the shadow polygons, the total shadow testing time of the proposed algorithm, HST was approximately 50% of that of the conventional shadow testing method for several examples while the total ray tracing time was typically reduced by 30% from the conventional approach. This due to the selective use of the shadow volume method with a compromise between the maximal utilisation of shadow's spatial coherency and minimising the computational overhead for checking ray intersections with the shadow polygons. A parameter, $N_{th}$ denoting the critical number of shadow polygons between successive reflection points was used as a guideline for switching the shadow testing scheme between the conventional method and shadow volume method. A method for calculating $N_{th}$ from such statistical data as the number of object polygons, average polygon size average peripheral length of the polygons was proposed, resulting in good agreement with the experimental results.

  • PDF

Solutions of Radiative Transfer for Nongray Gases within a 3-D Cylindrical Enclosure

  • Park, Won-Hee;Jung, Hyun-Sung;Kim, Tae-Kuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • In multi-dimensional systems, various solution schemes for radiative transfer are suggested but the applicabilities and accuracies of these schemes have not yet fully tested due to the lack of reference solutions especially for nongray gases. In this paper we present some precise radiative transfer solutions for a black walled 3-dimensional cylindrical system filled with nongray gases having uniform temperature and concentration. The ray-tracing method with the $T_N$ quadrature set and the SNB model are used to obtain the radiative transfer solutions by the nongray gases. The solutions presented in this paper are proved to be quite accurate and can be regarded as the reference solutions for the radiative transfer by nongray gases.

Optimum Design and Characterization of F-Theta Lens by a 3D Printer(I) (초점보정 렌즈설계 및 3D 프린터 이용 가공 특성평가(I))

  • Shin, Hyun-Myung;Yoon, Sung-Chul;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • A focal length-correcting lens called the F-theta lens is required to compensate for the different focus on spot size due to the deflected incident laser beam. The F-theta lens was designed by the ray tracing method and fabricated by a 3D printer with polymer-based material. The designed F-theta lens is able to compensate for the focus on spot size by an incidence angle of 0 to 2 degrees. Based on the analysis of the simulation, there was almost no aberration in the $0^{\circ}C$ incidence angle, and the maximum of $50{\mu}m$ of aberration was observed at the incidence angle of $2^{\circ}$. Diffraction-encircled energy was analyzed to characterize the designed optics, and an image simulation was performed to confirm the actual image resolution.