• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.031 seconds

3D Physical User Interface System using a Dominant Eye and an Index Fingertip (주시안과 검지 끝 점을 이용한 3차원 물리 사용자 인터페이스 시스템)

  • Kim, Kyung-Ho;Ahn, Jeeyun;Lee, Jongbae;Kwon, Heeyong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • In this paper, we propose a new 3D PUI(Physical User Interface) system in which the index fingertip points and moves a mouse position on a given monitor screen. There are two 3D PUI schemes to control smart devices like smart TVs remotely, the relative pointing one and the absolute pointing one. The former has a problem in that it does not match the human perception process, and the latter requires excessive movement of the body. We combined the relative one and the absolute one, and develop a new intuitive and user-friendly pointing method, 3D PUI. It requires an establishment of a pyramid shape visible area (view volume) to point a mouse position on a screen with the dominant eye. In order to maintain the real-time view volume, however, it requires large computation depending on the movement of the dominant eye. We optimized the computation of the view volume in which it determines the internal and external position on the screen. In addition, Kalman filter is applied with tracing of the mouse pointer position to stabilize the trembling of the pointer and offers the user ease of use.

Stereoscopic PIV (스테레오 PIV)

  • Doh, D.H.;Lee, W.J.;Cho, G.R.;Pyun, Y.B.;Kim, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.394-399
    • /
    • 2001
  • A new stereoscopic PIV is introduced. The system works with CCD cameras, stereoscopic photogrammetry, and a 3D-PTV principle. Virtual images are produced for the construction of a benchmark testing tool of PIV techniques. The arrangement of the two cameras is based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors are based on 3D-PTV technique.

  • PDF

Roll Motion Analysis of a 3 D.O.F. Planar Car Model using Instantaneous Centers (순간중심을 이용한 평면 3 자유도 자동차 모델의 롤 운동 해석)

  • Lee, Jae-Kil;Shim, Jae-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-98
    • /
    • 2006
  • In this paper, a planar car model with 3 degrees of freedom was analyzed using the concept of the roll center. To avoid ambiguity, force components which require experimental data were excluded. Only kinematic approach was used to find the position and orientation of the vehicle body and the position of the roll center. The roll center was found by the pole with infinitesimal movement and Kennedy-Aronhold theorem. Centrodes, which are the loci of instantaneous centers of planar motion, were constructed with analyzed results to show characteristics of vehicle body motion. To verify the presented analysis method in this paper, the locus of the roll center and the motion of a 3 D.O.F. planar car model were compared with those of the 1 D.O.F. model.

3D Position Measurement & Coping using 2 CCD Cameras (2대의 CCD 카메라를 이용한 3차원 위치측정과 코핑)

  • Kang, Won-Chan;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • Accurate acquisition of surface geometries such as machined surfaces, biological surfaces, and deformed parts have been very important technique in scientific study and engineering, especially for system design, manufacturing and inspection. Two-camera method keeps accuracy more than double than mechanical method. In this paper, a new method is studied to acquire 3D geometric data of the small object such as a die in stone model. When the devices, cameras, laser beam and object are in a perfect plane, the calculation is measured by position error 0.025[mm] within. But this paper shows that arbitrarily positioned system can also be used to obtain 3D data. Also, this paper present a method to generate coping surface data with which CAM system can do for milling work.

Point Recognition Precision Test of 3D Automatic Face Recognition Apparatus(3D-AFRA) (3차원 안면자동인식기(3D-AFRA)의 안면 표준점 인식 정확도 검증)

  • Seok, Jae-Hwa;Cho, Kyung-Rae;Cho, Yong-Beum;Yoo, Jung-Hee;Kwak, Chang-Kyu;Hwang, Min-U;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Contitutions. Now We are developing 3D Automatic Face Recognition Apparatus to analyse the facial characteristics. This apparatus show us 3D image of man's face and measure facial figure. We should examine accuracy of position recognition in 3D Automatic Face Recognition Apparatus(3D-AFRA). 2. Methods We took a photograph of Face status with Land Mark by using 3D-AFRA. And We scanned Face status by using laser scanner(vivid 700). We analysed error average of distance between Facial Definition Points. We compare the average between using 3D-AFRA and using laser scanner. So We examined the accuracy of position recognition in 3D-AFRA at indirectly. 3. Results and Conclusions The error average of distance between Right Pupil and The Other Facial Definition Points is 0.5140mm and the error average of distance between Left Pupil and The Other Facial Definition Points is 0.5949mm in frontal image of face. The error average of distance between Left Pupil and The Other Facial Definition Points is 0.5308mm and the error average of distance between Left Tragion and The Other Facial Definition Points is 0.6529mm in laterall image of face. In conclusion, We assessed that accuracy of position recognition in 3D-AFRA is considerably good.

  • PDF

Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis (3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립)

  • Park, Hyung-Wook;Park, Chul-Woo;Kim, Myong-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

A Study on the Direction finding of Drones Using Apollonius Circle Technique (Apollonius Circle 기법을 활용한 드론 방향탐지 연구)

  • Choi, Hong-Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.83-92
    • /
    • 2018
  • This paper uses the Apollonius Circle technique to estimate the position of a target that generates a specific signal by using a drone, which is rapidly becoming a rapidly expanding industry. The existing direction finding method is performed through the vehicle on the ground or installed the antenna at a high position to detect the position of the target. However, the conventional direction finding method is difficult to configure the reception environment of the LOS signal, It is difficult. However, the direction finding using the drone is easy to construct and measure the LOS signal receiving environment using the drone flying at high altitude. In this study, we use the 3D 800MHz Path-Loss Model to reconstruct the signal by using the measurement data of the ground direction finding, reconstruct the signal by using the 3-D 800MHz Path-Loss Model, and use the Apollonius Circle method to estimate the position of the target. A simulation was performed to estimate the position of the target. Simulation was performed to determine the target position estimation performance by configuring the ground direction finding and the dron direction finding.

A Study on the Design of Variable Reference Tap Position Equalizer for Synchronous Microwave Tansmission Systems (동기식 마이크로파 전송시스템을 위한 기준탭 위치 가변방식 등화기 설계에 관한 연구)

  • 이대영;장태화;방효창;김원후
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.4
    • /
    • pp.373-381
    • /
    • 1997
  • Digital microwave transmission systems are equipped with equalizer against fading during multipath fading. In this paper, we proposed variable reference tap position equalizer that varies the reference tap according to fading type to archive better performance. We got the performance improvement about 4~5 dB in MP condition and 2~3 dB in NMP condition from simulation results.

  • PDF

Lug Arrangement and Dynamic Analysis of Lifting Simulation for Underwater Installation of Structure in Asymmetric Position (비대칭 위치의 수중 구조물 설치를 위한 러그 위치 산정 및 리프팅 동역학 해석)

  • Jo, A-Ra;Park, Kwang-Phil;Lee, Hyun-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.283-289
    • /
    • 2015
  • RGT(Riser Guide Tube) is a part of mooring on the bottom of a turret system to be connected with a production riser, and DBSC(Diverless Bend Stiffener Connector) is a latching component between them. In this paper, appropriate lug arrangement is decided mathematically for the case that a DBSC is lifted and installed on a RGT under the water while FPSO is under construction. Considering asymmetric arrangement & position of RGT and initial lug position, additional lug positions are determined by using an optimization method. The modified installation scheme with new lug points is investigated with a lifting simulation system, SIMSON. The simulation result shows that the installation of DBSC on RGT under the given conditions is quite feasible; therefore the mathematical method is proven to be appropriate.

Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept (d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스)

  • Moon, Jong-Joo;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.