• Title/Summary/Keyword: 3-D porous

Search Result 339, Processing Time 0.021 seconds

A Study on Pore Properties of SUS316L Powder Porous Metal Fabricated by Electrostatic Powder Coating Process (정전분체코팅 공정으로 제조된 SUS316L 분말 다공체의 기공 특성에 관한 연구)

  • Lee, Min-Jeong;Yi, Yu-Jeong;Kim, Hyeon-Ju;Park, Manho;Kim, Byoung-Kee;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • Porous metals demonstrate not only excessively low densities, but also novel physical, thermal, mechanical, electrical, and acoustic properties. Thus, porous metals exhibit exceptional performance, which are useful for diesel particulate filters, heat exchangers, and noise absorbers. In this study, SUS316L foam with 90% porosity and $3,000{\mu}m$ pore size is successfully manufactured using the electrostatic powder coating (ESPC) process. The mean size of SUS316L powders is approximately $12.33{\mu}m$. The pore properties are evaluated using SEM and Archimedes. As the quantity of powder coating increases, pore size decreases from 2,881 to $1,356{\mu}m$. Moreover, the strut thickness and apparent density increase from 423.7 to $898.3{\mu}m$ and from 0.278 to $0.840g/cm^3$, respectively. It demonstrates that pore properties of SUS316L powder porous metal are controllable by template type and quantity of powder coating.

Three-dimensional Nanoporous Graphene-based Materials and Their Applications (3차원 나노 다공성 그래핀의 제조와 응용)

  • Jung, Hyun;Kang, Yein
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Graphene, a two-dimensional material with a single atomic layer, has recently become a major research focus in various applications such as electronic devices, sensors, energy storage, catalysts, and adsorbents, because of its large theoretical surface area, excellent electrical conductivity, outstanding chemical stability, and good mechanical properties. Recently, 3D nanoporous graphene structures have received tremendous attention to expand the application of 2D graphene. Here, we overview the synthesis of 3D nanoporous graphene network structure with two-dimensional graphite oxide sheets, the control of porous parameters such as specific surface area, pore volume and pore size etc, and the modification of electronic structure by heteroatom doping along with its various applications. The 3D nanoporous graphene shows superior performance in diverse applications as a promising key material. Consequently, 3D nanoporous graphene can lead the future for advanced nanotechnology.

Characterization of Elastic Modulus of Kelvin Foam Using Elastic Structural Model and Ultrasound (초음파와 탄성 구조 모델을 이용한 캘빈 폼 재료의 탄성계수 평가)

  • Kim, Woochan Ethan;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.474-482
    • /
    • 2016
  • A Kelvin foam plate - widely used in the energy and transport industries as a lightweight structural material - was examined to estimate its Young's modulus using ultrasound. An isotropic tetrakaidecahedron foam structure was designed in SolidWorks and printed using 3D printer with an ABS plastic material. The 3D printed foam structure was used to build a foam plate with a 14 mm thickness ($50mm{\times}100mm$ in size) for the ultrasonic test. The Kelvin foam plate, a significantly porous medium, was completely filled with paraffin wax to enable the ultrasound to penetrate through the porous medium. The acoustic wave velocity of the wax-filled Kelvin foam was measured using the time of flight (TOF) method. Furthermore, the elastic modulus of the Kelvin foam was estimated based on an elastic structural model developed in this study. The Young's modulus of the produced Kelvin foam was observed to be approximately 3.4% of the bulk value of the constituent material (ABS plastic). This finding is consistent with experimental and theoretical results reported by previous studies.

A two-phase interface element for simulation of lining systems

  • Liu, X.;Scarpas, A.;Blaauwendraad, J.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.547-564
    • /
    • 2001
  • The numerical formulation of a two-phase interface element appropriate for porous lining system is presented. The formulation is isoparametric and can be applied both for 2-D and 3-D analysis. Biot's theory is utilized as the basis for the development of the element constitutive theory. In order to be capable of simulating the reinforcing characteristics of some geotextiles utilized as lining system, a reinforcement component has also been implemented into the formulation. By employing this specially developed interface finite element, the influence of soil consolidation on the stress distribution along the lining system of a reservoir and a landfill has been investigated.

Preparation of Porous Layered Carbon Using Magadiite Template (Magadiite 주형을 이용한 층상 카본의 합성)

  • Choe, Seok-Hyon;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.408-412
    • /
    • 2005
  • Porous layered carbon was prepared by interlayer pyrolysis of pyrolysis fuel oil (PFO) using magadiite template and successive dissolution of template. Particle morphology was plate type with d-spacing of approximately 0.7 nm and it had constant interlayer space. Specific surface area was $147{\sim}385m^2/g$ depending upon template type, mixing ratios and pyrolysis time.

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.

Preparation of Hydrophobic Porous PVDF Membrane and Application for Membrane Distillation (소수성 다공질 PVDF 중공사 분리막 제조 및 막증류 적용)

  • Min, Ji Hee;Park, Min Soo;Kim, Jinho
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.240-248
    • /
    • 2014
  • Porous PVDF hollow fiber membranes were prepared by hybrid process of TIPS(thermally induced phase separation) and stretching for membrane distillation. The tests were conducted to investigate that permeability of the membrane could be enhanced by reducing membrane wall thickness. During fiber spinning, dope discharge rate from nozzle was reduced and flow rate of bore fluid increased to make the wall thickness thinner. As dope discharge rate from nozzle was reduced and flow rate of bore fluid increased, the membrane wall thickness was reduced. As a result, air permeability, water permeability and vapor permeability of the membranes increased.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.

Extended Unmixing-Mixing Scheme for Prediction of 3D Behavior of Porous Composites (다공성 복합재료의 삼차원 거동 예측을 위한 분리-혼합 기법의 확장)

  • Choi, Hoi Kil;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Pyrolysis and surface recession of charring composites are progressed primarily in the thickness direction. The unmixing-mixing scheme is applied to describe the in-plane and through-thickness behaviors of porous composites. The extended unmixing-mixing equations are based on transverse isotropy of unidirectionally fiber-reinforced composites. The strain components of gas pressure in pores, thermal expansion, and chemical shrinkage are included in the constitutive model. By analyzing micromechanical representative volume elements of porous composites, the validity of the derived equations are examined.