• 제목/요약/키워드: 3-D porous

검색결과 339건 처리시간 0.025초

다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술 (Mold technology with 3D printing for manufacturing of porous implant)

  • 이성희;김미애;윤언경;이원식
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

폴리머 적층 시스템과 염 침출법을 결합한 3차원 다공성 인공지지체 제작 (A Study on Fabrication of 3D Porous Scaffold Combined with Polymer Deposition System and a Salt Leaching Method)

  • 심해리;사민우;김종영
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.86-92
    • /
    • 2016
  • In this study, we used a polymer deposition system, based on fused deposition modeling, to fabricate the 3D scaffold and then fabricated micro-pores on a 3D scaffold using a salt leaching method. Materials included polycaprolactone (PCL) and sodium chloride (NaCl). The 3D porous scaffolds were fabricated according to blending ratio such as PCL (70 wt%)/NaCl (30 wt%) and PCL (50 wt%)/NaCl (50 wt%). The 3D porous scaffolds were observed by scanning electron microscopy. The results showed that 3D porous scaffolds had a deposition width of $500{\mu}m$, contained a pore size of $500{\mu}m$ and below $100{\mu}m$. To evaluate the 3D porous scaffolds for bone tissue engineering, we carried out the cell proliferation experiment using a CCK-8 and a mechanical strength test using a universal testing machine. In summary, the 3D porous scaffold was found to be suitable for cancellous bone of human in accordance with the result of in-vitro cell proliferation and mechanical strength. Thus, a 3D porous scaffold could be a promising approach for effective bone regeneration.

개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구 (Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products)

  • 유찬주;김혜수;박준한;윤단희;신종국;신보성
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

Solid volume fraction이 20% 인 다공성 실린더 주위의 유동 해석 (NUMERICAL SIMULATION OF FLOW PAST A POROUS CYLINDER WITH 20% SOLID VOLUME FRACTION)

  • 장경식
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.87-92
    • /
    • 2012
  • The presence of a layer of vegetation which is relevant in river engineering or coastal engineering can modify the overall flow resistance, turbulent characteristics of flow. The patch of vegetation can be modelled and studied in a simple porous cylinder by previous researchers. Fully three dimensional Large Eddy Simulation is conducted in flow past a porous cylinder with a solid volume fraction (SVF) 0f 20%. The porous cylinder of diameter D contains 89 smaller cylinders which diameter is 0.048D in a regular staggered way. Reynolds number based on porous cylinder diameter D and the bulk velocity is 10,000. The large scale shedding is qualitatively similar to the one observed in the non-porous case (SVF=100%). The difference in the dynamics of the separated shear layer and the streamwise flow penetrating through the porous cylinder are compared with those in the non-porous cylinder. In particular, the wake billows form a larger distance from the back of the porous cylinder.

해양 지중저장층내 초임계 $CO_2$ 유동에 대한 전산모사 (Numerical Simulation of Supercritical $CO_2$ Flow in a Geological Storage Reservoir of Ocean)

  • 최항석
    • 대한환경공학회지
    • /
    • 제33권4호
    • /
    • pp.251-257
    • /
    • 2011
  • 이산화탄소의 해양 지중저장에 대한 전산모사를 위해 실제 이산화탄소가 저장되는 해양 지중 저장층에 대한 3차원 전산모형을 개발하였다. 특히, 실제 저장층의 3차원 구조를 모사하기 위하여 공극의 크기를 불규칙(random)적으로 부여하는 수치적 방법을 고안하여 3차원 전산모형을 구성하였고, 이를 균일한 공극 구조의 경우와 비교하였다. 이렇게 구성된 3차원 공극모형 내의 초임계 이산화탄소 유동을 시뮬레이션하기 위하여 전산유체역학을 사용하였다. 이러한 초임계 이산화탄소의 시뮬레이션에는 실제 저장층의 환경 즉 온도 및 압력을 동일하게 모델링하여 적용하였다. 공극 구조가 $CO_2$의 유동에 미치는 영향을 살펴보기 위해, 세 가지 형태의 3차원 전산모형의 공극 구조 내부를 흐르는 초임계 이산화탄소 유동에 대한 수치해석을 수행하였으며, 특히 3차원 전산모형의 내부유동에 대한 압력강하 및 투수율을 계산하여 본 모형이 해양 지중저장의 전산모사에 적합한지를 판단하고, 이산화탄소 유량 증가에 따른 초임계 이산화탄소 유동의 특성을 살펴보았다.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

Numerical analysis of the thermal behaviors of cellular concrete

  • She, Wei;Zhao, Guotang;Yang, Guotao;Jiang, Jinyang;Cao, Xiaoyu;Du, Yi
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.319-336
    • /
    • 2016
  • In this study, both two- and three-dimensional (2D and 3D) finite-volume-based models were developed to analyze the heat transfer mechanisms through the porous structures of cellular concretes under steady-state heat transfer conditions and to investigate the differences between the 2D and 3D modeling results. The 2D and 3D reconstructed pore networks were generated from the microstructural information measured by 3D images captured by X-ray computerized tomography (X-CT). The computed effective thermal conductivities based on the 2D and 3D calculations performed on the reconstructed porous structures were found to be nearly identical to those evaluated from the 2D cross-sectional images and the 3D X-CT images, respectively. In addition, the 3D computed effective thermal conductivity was found to agree better with the measured values, in comparison with the 2D reconstruction and real cross-sectional images. Finally, the thermal conductivities computed for different reconstructed porous 3D structures of cellular concretes were compared with those obtained from 2D computations performed on 2D reconstructed structures. This comparison revealed the differences between 2D and 3D image-based modeling. A correlation was thus derived between the results of the 3D and 2D models.

수용성 입자를 이용한 다공성 폴리머 구조체의 공극률 향상과 기계적 물성과의 관계 (Relationship between Mechanical Properties and Porosity of Porous Polymer Sheet Fabricated using Water-soluble Particles)

  • 소새롬;박석희;박상후
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.16-23
    • /
    • 2018
  • A polymer porous sheet, which can be applied to diverse wearable devices, has some advantages such as light-weight, high flexibility, high elongation, and so many others. In order to fabricate a porous sheet, water-soluble particles like sugar were utilized frequently, and there has been great advances. However, with our best knowledge, there are not enough reports on the mechanical behavior of porous sheets having different porosity. So, in this work, we tried to find out the relationship between porosity and mechanical deformation of a porous sheet. The process parameters such as a particle size, sheet thickness and PDMS mixing ratio with curing agent were analyzed on the effect of increasing the porosity of a sheet. Also, mechanical deformation of a sheet was tested using a tensile experiment. Through the experimental results, we make a conclusion that a highly porous sheet with thin thickness has high flexibility, and it deformed nearly double elongation comparing to worst one among nine cases.

Application Research on Mechanical Strength and Durability of Porous Basalt Concrete

  • Zhu, Yuelei;Li, Jingchun;Zhu, He;Jin, Long;Ren, Qifang;Ding, Yi;Li, Jinpeng;Sun, Qiqi;Wu, Zilong;Ma, Rui;Oh, Won-Chun
    • 한국재료학회지
    • /
    • 제32권3호
    • /
    • pp.115-124
    • /
    • 2022
  • Porous basalt aggregate is commonly used in roadbed engineering, but its application in concrete has rarely been studied. This paper studies the application of porous basalt in concrete. Porous basalt aggregate is assessed for its effects on mechanical strength and durability of prepared C50 concrete; because it has a hole structure, porous basalt aggregate is known for its porosity, and porous basalt aggregates can be made full of water through changing the content of saturated basalt; after full-water condition is achieved in porous basalt aggregate mixture of C50 concrete, we discuss its mechanical properties and durability. The effects of C50 concrete prepared with basalt aggregate on the compressive strength, water absorption, and electric flux of concrete specimens of different ages were studied through experiments, and the effects of different replacement rates of saturated porous basalt aggregate on the properties of concrete were also studied. The results show that porous basalt aggregate can be prepared as C50 concrete. For early saturated porous basalt aggregate concrete, its compressive strength decreases with the increase of the replacement rate of saturated aggregate; this occurs up to concrete curing at 28 d, when the replacement rate of saturated basalt aggregate is greater than or equal to 40 %. The compressive strength of concrete increases with the increase of the replacement rate of saturated aggregate. The 28 d electric flux decreases with the increase of the replacement rate of saturated aggregate, indicating that saturated porous basalt aggregate can improve the chloride ion permeability resistance of concrete in later stages.