• Title/Summary/Keyword: 3-D plastic potential function

Search Result 5, Processing Time 0.021 seconds

A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress

  • Zou, Jin-Feng;Xia, Ming-yao
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The problem of cylindrical cavity expansion incorporating deformation dependent of intermediate principal stress in rock or soil mass is investigated in the paper. Assumptions that the initial axial total strain is a non-zero constant and the axial plastic strain is not zero are defined to obtain the numerical solution of strain which incorporates deformation-dependent intermediate principal stress. The numerical solution of plastic strains are achieved by the 3-D plastic potential functions based on the M-C and generalized H-B failure criteria, respectively. The intermediate principal stress is derived with the Hook's law and plastic strains. Solution of limited expansion pressure, stress and strain during cylindrical cavity expanding are given and the corresponding calculation approaches are also presented, which the axial stress and strain are incorporated. Validation of the proposed approach is conducted by the published results.

Analysis of Anisotropic Plasticity of Additively Manufactured Structure using Modified Return Mapping Method (개선된 회귀착점 방법을 이용한 이방성 적층구조물의 소성해석)

  • Yang, Seung-Yong;Jin, Doo-Han;Kim, Jeoung-Han
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.303-308
    • /
    • 2022
  • The plastic deformation behavior of additively manufactured anisotropic structures are analyzed using the finite element method (FEM). Hill's quadratic anisotropic yield function is used, and a modified return-mapping method based on dual potential is presented. The plane stress biaxial loading condition is considered to investigate the number of iterations required for the convergence of the Newton-Raphson method during plastic deformation analysis. In this study, incompressible plastic deformation is considered, and the associated flow rule is assumed. The modified return-mapping method is implemented using the ABAQUS UMAT subroutine and effective in reducing the number of iterations in the Newton-Raphson method. The anisotropic tensile behavior is computed using the 3-dimensional FEM for two tensile specimens manufactured along orthogonal additive directions.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

Generation and Detection of Cranial Landmark

  • Heo, Suwoong;Kang, Jiwoo;Kim, Yong Oock;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose When a surgeon examines the morphology of skull of patient, locations of craniometric landmarks of 3D computed tomography(CT) volume are one of the most important information for surgical purpose. The locations of craniometric landmarks can be found manually by surgeon from the 3D rendered volume or 2D sagittal, axial, and coronal slices which are taken by CT. Since there are many landmarks on the skull, finding these manually is time-consuming, exhaustive, and occasionally inexact. These inefficiencies raise a demand for a automatic localization technique for craniometric landmark points. So in this paper, we propose a novel method through which we can automatically find these landmark points, which are useful for surgical purpose. Materials and Methods At first, we align the experimental data (CT volumes) using Frankfurt Horizontal Plane (FHP) and Mid Sagittal Plane(MSP) which are defined by 3 and 2 cranial landmark points each. The target landmark of our experiment is the anterior nasal spine. Prior to constructing a statistical cubic model which would be used for detecting the location of the landmark from a given CT volume, reference points for the anterior nasal spine were manually chosen by a surgeon from several CT volume sets. The statistical cubic model is constructed by calculating weighted intensity means of these CT sets around the reference points. By finding the location where similarity function (squared difference function) has the minimal value with this model, the location of the landmark can be found from any given CT volume. Results In this paper, we used 5 CT volumes to construct the statistical cubic model. The 20 CT volumes including the volumes, which were used to construct the model, were used for testing. The range of age of subjects is up to 2 years (24 months) old. The found points of each data are almost close to the reference point which were manually chosen by surgeon. Also it has been seen that the similarity function always has the global minimum at the detection point. Conclusion Through the experiment, we have seen the proposed method shows the outstanding performance in searching the landmark point. This algorithm would make surgeons efficiently work with morphological informations of skull. We also expect the potential of our algorithm for searching the anatomic landmarks not only cranial landmarks.