• 제목/요약/키워드: 3-D free vibration analysis

검색결과 123건 처리시간 0.019초

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

Vibration analysis of cracked frame structures

  • Ibrahim, Ahmed M.;Ozturk, Hasan;Sabuncu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.33-52
    • /
    • 2013
  • In this study, the effects of crack depth and crack location on the in-plane free vibration of cracked frame structures have been investigated numerically by using the Finite Element Method. For the rectangular cross-section beam, a crack element is developed by using the principles of fracture mechanics. The effects of crack depth and location on the natural frequency of multi-bay and multi-store frame structures are presented in 3D graphs. The comparison between the present work and the results obtained from ANSYS shows a very good agreement.

Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory

  • Guerroudj, Hicham Zakaria;Yeghnem, Redha;Kaci, Abdelhakim;Zaoui, Fatima Zohra;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.121-132
    • /
    • 2018
  • This research investigates the free vibration analysis of advanced composite plates such as functionally graded plates (FGPs) resting on a two-parameter elastic foundations using a hybrid quasi-3D (trigonometric as well as polynomial) higher-order shear deformation theory (HSDT). This present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by a sinusoidal and parabolic variation of all displacements across the thickness. Governing equations of motion for FGM plates are derived from Hamilton's principle. The closed form solutions are obtained by using Navier technique, and natural frequencies are found, for simply supported plates, by solving the results of eigenvalue problems. The accuracy of the present method is verified by comparing the obtained results with First-order shear deformation theory, and other predicted by quasi-3D higher-order shear deformation theories. It can be concluded that the proposed theory is efficient and simple in predicting the natural frequencies of functionally graded plates on elastic foundations.

A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Meziane, Mohamed Ait Amar;Safa, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.771-781
    • /
    • 2018
  • This study deals with free vibrations analysis with stretching effect of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The governing equations are derived through using Hamilton's principle. Natural frequencies are obtained for nanocomposite beams. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of free vibration analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. The effects of different parameters of the beam on the vibration responses of CNTRC beam are discussed.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

Free vibration analysis of FG porous spherical cap reinforced by graphene platelet resting on Winkler foundation

  • Xiangqian Shen;Tong Li;Lei Xu;Faraz Kiarasi;Masoud Babaei;Kamran Asemi
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.11-26
    • /
    • 2024
  • In this study, free vibration analysis of FG porous spherical cap reinforced by graphene platelets resting on Winkler-type elastic foundation has been surveyed for the first time. Three different types of porosity patterns are considered for the spherical cap whose two types of porosity patterns in the metal matrix are symmetric and the other one is uniform. Besides, five GPL patterns are assumed for dispersing of GPLs in the metal matrix. Tsai-Halpin and extended rule of the mixture are used to determine the Young modulus and mass density of the shell, respectively. Employing 3D FEM elasticity in conjunction with Hamilton's Principle, the governing motion equations of the structure are obtained and solved. The impact of various parameters including porosity coefficient, various porosity distributions in conjunction with different GPL patterns, the weight fraction of graphene Nano fillers, polar angles and stiffness coefficient of elastic foundation on natural frequencies of FG porous spherical cap reinforced by GPLs have been reported for the first time.

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Vibrations of truncated shallow and deep conical shells with non-uniform thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.29-46
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the natural frequencies of a truncated shallow and deep conical shell with linearly varying thickness along the meridional direction free at its top edge and clamped at its bottom edge. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Strain and kinetic energies of the truncated conical shell with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated. The frequencies from the present 3-D method are compared with those from other 3-D finite element method and 2-D shell theories.