• Title/Summary/Keyword: 3-D finite element models

Search Result 366, Processing Time 0.034 seconds

Influence of Malalignment on Tibial Post in Total Knee Replacement Using Posterior Stabilized Implant (슬관절 전치환술에서 후방 안정 임플란트의 오정렬이 경골 기둥에 미치는 영향)

  • Kim, Sang-Hoon;Ahn, Ok-Kyun;Bae, Dae-Kyung;Kim, Yoon-Hyuk;Kim, Kyung-Soo;Lee, Soon-Gul
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 2007
  • Recently, it has been reported that the posterior stabilized implant, which is clinically used for the total knee replacement (TKR), may have failure risk such as wear or fracture by the contact pressure and stress on the tibial post. The purpose of this study is to investigate the influence of the mal alignment of the posterior stabilized implant on the tibial post by estimating the distributions of contact pressure and von-Mises stress on a tibial post and to analyze the failure risk of the tibial post. Finite element models of a knee joint and an implant were developed from 1mm slices of CT images and 3D CAD software, respectively. The contact pressure and the von-Mises stress applying on the implant were analyzed by the finite element analysis in the neutral alignment as well as the 8 malalignment cases (3 and 5 degrees of valgus and varus angulations, and 2 and 4 degrees of anterior and posterior tilts). Loading condition at the 40% of one whole gait cycle such as 2000N of compressive load, 25N of anterior-posterior load, and 6.5Nm of torque was applied to the TKR models. Both the maximum contact pressure and the maximum von-Mises stress were concentrated on the anterior-medial region of the tibial post regardless of the malalignment, and their magnitudes increased as the degree of the malalignment increased. From present result, it is shown that the malalignment of the implant can influence on the failure risk of the tibial post.

Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working (컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석)

  • Kim, Jungyun;Kim, Jingon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.379-384
    • /
    • 2014
  • This article describes the dynamic behaviors of a rubber tired gantry crane(RTGC) under typical load conditions which are used in the design of gantry cranes. In order to investigate the dynamic characteristics of an RTGC, we developed a finite element crane model for its huge structure. The finite element model was validated with the modal test results, e.g., natural frequencies and normal modes. And other components of RTGC were converted into detailed 3D CAD models and finally transformed to rigid body models in a dynamic simulation program ADAMS. The load conditions considered in this paper were a normal operating condition(OP1) and container hanging condition with no external loads. As a result, we could find there was large influence of crane's vibration owing to its structural stiffness and deformation. And the vibration of crane could made the movements of RTGC, which occurs crash or malfunction of crane works.

Characterization of the Stress in the Luting Cement layer Influenced by Material Properties of Full Veneer Crown (전부피개관의 물성과 시멘트의 물성이 시멘트 내부의 응력에 미치는 영향)

  • Lee, Jun-Young;Lee, Kyu-bok;Lee, Chung-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • The objective of this study was to test the effects of crown material, cement type, the direction in which stress is applied and distribution of luting cement that might lead to cement microfracture using 2D Finite Element Method. Twenty three finite element models with a chamfer margin configuration were generated for a mandibular first molar. Crown models exhibited four crown materials: type 3 gold alloy, Ni-Cr alloy, ceramic and composite resin, and two luting cements: zinc phosphate and glass ionomer cements with a thicknesses of $70{\mu}m$. Modeled crowns were loaded axially or obliquely at unit load of 1 N. Areas and levels of stress concentrations within the cement were determined. Stress in the cement layer at the margins of crowns were higher than those in the area away from the margin. Stress under oblique loads were much higher than under axial load. The stiffer crown material produced higher stress and similarly, higher stress were found in cements with the greater Young's modulus.

Optimum Design for Static Torque Characteristics of Claw-Poles PM Stepping Motor Using Pattern Search Algorithm and 3-Dimension Finite Element Method (3차원 유한요소법과 패턴 탐색 알고리즘을 이용한 영구자석형 클로우폴 스테핑 모터의 정토크 특성 최적설계)

  • Cho, Su-Yeon;Ham, Sang-Hwan;Bae, Jae-Nam;Park, Hyun-Jong;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.670_671
    • /
    • 2009
  • This paper presents a optimum design process for static torque characteristics of the Claw-Poles PM Stepping Motor(CPSM). Since the shape of CPSM changes along with axial direction, CPSM should only be analyzed by 3D-FEM. But 3D-FEM needs too much computation time and computer resources. Therefore, it is essential to reduce the number of 3D-FEM analysis models. In this paper, two design factors which affect the static torque characteristics of CPSM were selected. Optimum design process was able to make progress by using Pattern Search Algorithm and 3D-FEM. Finally, optimized model was compared with a conventional model.

  • PDF

Efficient Methods of Prediction Incorporating Equivalent Models for Elasto-Plastic Bending Behavior of Metallic Sandwich Plates with Inner Dimpled Shell Structure (등가형상을 이용한 딤플형 금속 샌드위치 판재의 효율적 굽힘 거동 예측)

  • Seong D. Y.;Jung C. G.;Yoon S. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.718-724
    • /
    • 2005
  • An efficient finite element method has been introduced for analysis of metallic sandwich plates subject to bending moment. A full model 3-point bending FE-analysis shows that the plastic behavior of inner structures appears only at the load point. The unit structures of sandwich plates are defined to numerically calculate the bending stiffness and strength utilizing the recurrent boundary condition for pure bending analysis. The equivalent models with the same bending stiffness and strength of full models are then designed analytically. It is demonstrated that the results of both models are almost the same and the FE-analysis method incorporating the equivalent models can reduce the computation time effectively. The dominant collapse modes are face buckling and face yielding. Since the inner dimpled structures prevent face buckling, sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Parametric study of laterally loaded pile groups using simplified F.E. models

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The problem of laterally loaded piles is particularly a complex soil-structure interaction problem. The flexural stresses developed due to the combined action of axial load and bending moment must be evaluated in a realistic and rational manner for safe and economical design of pile foundation. The paper reports the finite element analysis of pile groups. For this purpose simplified models along the lines similar to that suggested by Desai et al. (1981) are used for idealizing various elements of the foundation system. The pile is idealized one dimensional beam element, pile cap as two dimensional plate element and the soil as independent closely spaced linearly elastic springs. The analysis takes into consideration the effect of interaction between pile cap and soil underlying it. The pile group is considered to have been embedded in cohesive soil. The parametric study is carried out to examine the effect of pile spacing, pile diameter, number of piles and arrangement of pile on the responses of pile group. The responses considered include the displacement at top of pile group and bending moment in piles. The results obtained using the simplified approach of the F.E. analysis are further compared with the results of the complete 3-D F.E. analysis published earlier and fair agreement is observed in the either result.

Design Evaluation of WEDM Based on Deformation Analyses and Axiomatic Design (변형해석 및 공리적 설계에 의한 와이어 방전가공기의 설계평가)

  • Lee, Hyeong-Il;U, Sang-U;Kim, Ju-Won;Kim, Chung-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.851-863
    • /
    • 2002
  • Recent industrial requirements for highly precise shape processing have brought the electric discharge machining (EDM) in great need. High precision in EDM is primarily achieved by high performance controllers. However there exists inherent precision loss due to structural micro-deformation. On this background, we study structural deformation characteristics of wire cut EDM via finite element (FE) analysis and axiomatic design. Two different wire cut EDMs are selected as analysis models. 3D CAD package I-Deas is first used to construct FE models of wire cut EDMs, and then ABAQUS FE code is used for following structural analysis. Pertinency of FE mesh refinement is discussed in terms of η -factor. It is shown that performance accuracy of EDM depends strongly on the structural characteristics. Some design enhancements are suggested in an axiomatic design point of view. Finally we provide weight and temperature induced displacement discrepancies between wire end points as position functions of each subframe.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

A Study on Development of Humeral Intramedullary Fixation Nail based on Korean Cadaver Tests (한국인 Cadaver Test에 대한 상완골 골수정 개발에 관한 연구)

  • Chon, Chang-Soo;Lee, Jae-Won;Ko, Cheol-Woong;Oh, Jong-Keon;Woo, Soo-Heon;Lee, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.984-991
    • /
    • 2011
  • The aim of this study is to develop a humeral Intramedullary fixation nail (HIFN) suitable for Korean people. In this study, CT images were obtained from 72 Korean cadaveric humeral bones and 3D Korean humeral bone models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of HIFN were selected using the morphological measurement information of the Korean humeral bone models. Through finite element analysis and mechanical tests, the developed HIFN prototype was compared with the Polarus HIFN ($ACUMED^{(R)}$, USA), and it was found that the HIFN prototype showed similar and/or superior mechanical performance compared to the Polarus HIFN. Also, clinical validation for the HIFN prototype was carried out to check predictable troubles in surgical operations. Finally, optimal design modification was proposed to prevent the possible axillary nerve injury due to the locking screw system of the HIFN prototype.