• 제목/요약/키워드: 3-D display system

검색결과 601건 처리시간 0.032초

GIS Based Realistic Weather Radar Data Visualization Technique

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Multimedia Information System
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2017
  • In recent years, the quixotic nature and concentration of rainfall due to global climate change has intensified. To monitor localized heavy rainfalls, a reliable disaster monitoring and warning system with advanced remote observation technology and high-precision display is important. In this paper, we propose a GIS-based intuitive and realistic 3D radar data display technique for accurate and detailed weather analysis. The proposed technique performs 3D object modeling of various radar variables along with ray profiles and then displays stereoscopic radar data on detailed geographical locations. Simulation outcomes show that 3D object modeling of weather radar data can be processed in real time and that changes at each moment of rainfall events can be observed three-dimensionally on GIS.

Implementation of the VHOE-based Multiview 3D Display System by using Optimized Exposure-Time Scheduling Scheme

  • Kim, Seung-Chul;Gu, Jung-Sik;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.883-886
    • /
    • 2002
  • A new exposure time scheduling scheme to implement the optimized photopolymer-based VHOE is proposed and using this method, the 8-view VHOE system is experimentally developed. The CGS dependence on the exposure energy is mathematically modeled using the fourth-order polynomial function and using this model optimized exposure-time schedule for recording the given multiple gratings in the photopolymer is calculated. In addition, basing on this suggested exposure-time schedule, 8-view VHOE is finally implemented and its performance is discussed.

  • PDF

Ergonomic Approaches to Content Creation for 3D Displays

  • Kawai, Takashi;Kishi, Shinsuke;Kim, Sang-Hyun;Yamazoe, Takashi;Shibata, Takashi;Inoue, Tetsuri;Sakaguchi, Yusuke;Okabe, Kazushige;Yasuhiro, Kuno
    • Journal of Information Display
    • /
    • 제8권1호
    • /
    • pp.26-31
    • /
    • 2007
  • This paper presents ergonomic approaches to editing and evaluating content for 3D displays. Two systems, a nonlinear editing system and an evaluation system, were developed to improve viewing safety and comfort for 3D content observers and provide better usability for the creators from the viewpoint of ergonomics.

Three-dimensional Dynamic Display System Based on Integral Imaging

  • Jung, Sung-Yong;Min, Sung-Wook;Park, Jae-Hyeung;Lee, Byoung-Ho
    • Journal of Information Display
    • /
    • 제3권1호
    • /
    • pp.22-26
    • /
    • 2002
  • Three-dimensional dynamic display system based on computer-generated integral imaging is discussed and its feasibility is verified via some basic experiments. Integrated images observed from different viewing points are seen to have full parallax and the animated 3D image was implemented successfully. Moreover, using large size Fresnel lens array was found to helps widen viewing angle and to make the system more practical.

Implementation of 3-D Data Viewing System

  • 이강도;이효종
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.749-750
    • /
    • 2008
  • It is often required to display 3-D data onto a 2-D screen and to examine and verify validity of data. LIDAR data is a good example. They represent 3-D spatial information in text format. However, it is very difficult to examine data on a 2-D screen. A 3-D data viewing system has been implemented and tested in order to solve the problem.

  • PDF

Calibration Method for the Panel-type Multi-view Display

  • Kim, Jonghyun;Lee, Chang-Kun;Hong, Jong-Young;Jang, Changwon;Jeong, Youngmo;Yeom, Jiwoon;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • 제19권5호
    • /
    • pp.477-486
    • /
    • 2015
  • We propose a novel calibration method which can be applied to all kinds of panel-type multi-view displays. We analyze how the angular, the axial, and the lateral misalignment affects the 3D image quality in a panel-type multi-view display. We demonstrate the ray optics simulation with a 3-view slanted parallax barrier system using pentile display for the quantitative calculation. Based on the analysis, we propose a new alignment pattern for all kinds of panel-type multi-view displays. The proposed pattern is sensitive to all of the angular, the axial, and the lateral misalignments. The high spatial frequency images and on and off alignment in the proposed pattern help observers to calibrate the system easily. We theoretically show the generality of the proposed alignment pattern and verify the pattern with image simulations and experiments.

효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현 (Implementation of Multiview Calibration System for An Effective 3D Display)

  • 배경훈;박재성;이동식;김은수
    • 한국통신학회논문지
    • /
    • 제31권1C호
    • /
    • pp.36-45
    • /
    • 2006
  • 본 논문에서는 효과적인 3차원 영상 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현을 제안한다. 본 논문에서 제안한 보정처리 시스템은 기존의 스테레오 방식에서 확장된 4시점으로 카메라를 구성하여 영상을 획득하고 다시점 영상 간에 발생할 수 있는 렌즈의 왜곡, 카메라 오차 및 크기, 카메라 간 밝기 및 색상, 영상 간 밝기 균일도 등의 영상의 보정 신호처리에 대한 방법을 제시한다. 본 논문에서 제안된 시스템에서는 카메라 간 밝기 및 색상 보상은 각 영상의 특징점과 대응점을 찾아 영상 전체에 대한 대응점을 추출하여 색 변환을 통해 영상을 보정하였고 밝기 및 균일도 처리는 각 영상의 밝기차이 맵을 생성하여 보상하였다. 또한 렌즈의 구면수차로 인한 왜곡은 각 영상의 패턴을 검출한 후 렌즈 왜곡을 보정하고 카메라의 오차 및 크기 보상을 통해 다시점 3차원 디스플레이시 발생되는 왜곡현상을 해결하여 보다 효과적인 3차원 입체 디스플레이가 가능하도록 하였다.

Dual Autostereoscopic Display Platform for Multi-user Collaboration with Natural Interaction

  • Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.466-469
    • /
    • 2012
  • In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF