• Title/Summary/Keyword: 3-D coordinate system

Search Result 392, Processing Time 0.017 seconds

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Computerized Multiple 15-hue tests for Quantifying Color Vision Acuity (색각 능력의 정량적 평가를 위한 전산화된 다중 15-색상 배열 검사법)

  • Ko S.T.;Hong S.C.;Choi M.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.321-331
    • /
    • 2000
  • Multiple 15-hue tests were designed and implemented on a PC in the study so as to quickly and quantitatively evaluate color vision acuity. Difficulty of the test was control)ed by the value of CDBACC (color difference between adjacent color chips) calculated using a CIELAB formula. The multiple 15-hue tests consist of eight of the hue tests (test 3-10) and three of the basic color (red, green, blue) tests (test 11-13). The 15 colors used for the hue tests were specified by the 15 color coordinates that were located at a constant distance (d = 2. 3. 5. 7, 10, 20, 30. 40) from white reference in the CIE chromaticity coordinate system and were separated by a constant color difference (CDBACC = 0.75, 1.1, 1.8. 2.5. 3.5. 7.5. 11, 14) from the adjacent chips. The color coordinates for the 15 chips for the basic color tests were the same as those of the 15 points spaced equally by a constant color difference (6.87 for the green color test. 7.27 for the red color test, 7.86 for the blue color test) from the white reference along the axis of red, green and blue. Thirty normal subjects who were not color blind were taken to undergo the multiple 15-hue tests. It was observed that most of the subjects correctly arranged color chips for the tests with CDBACC greater than 5, whereas no one correctly answered for those with CDBACC less than 2. Rapid changes in the number of the subjects correctly arranged took place when CDBACC of the tests was between 2 and 4.5. In the basic color tests, unlike the hue tests having similar values of CDBACC, it was seen that the subjects arranged color chips even less correctly. It was found that JNCD (just noticeable color difference) - a measure of color vision acuity was about 3 in average for the subjects. The JNCD was chosen as the value of the CDBACC of the test for which about $50\%$ of the subjects failed to successfully arrange color chips. ERCCA (error rate of color chips arrangement) for the test with CDBACC the same as the JNCD was shown to be about $20\%$. It is expected that the multi 15-hue tests implemented on a PC in the study will be an economical tool to quickly and quantitatively evaluate color vision acuity and, accordingly, the tests can be used for early diagnosis to massive potential patients suffering from diseases (ex. diabetes, glaucoma) which may induce changes in color vision acuity.

  • PDF