• Title/Summary/Keyword: 3-D behavior

Search Result 2,776, Processing Time 0.037 seconds

Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody (차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구)

  • Kim, Geo-Young;Koo, Jung-Seo;Park, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

Cost Behavior of Decline-Stage firms with High R&D Intensity (연구개발 집약도가 높은 쇠퇴기 기업들의 원가행태)

  • Oh, Sang-Hoon;Yi, Sung-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.3
    • /
    • pp.397-415
    • /
    • 2021
  • Purpose - The purpose of this study is to analyze the cost behavior of firms, taking into account both high R&D intensity and situations in which R&D activities are likely to be performed efficiently. Design/methodology/approach - During the sample period from 2002 to 2019, regression analysis is conducted on the manufacturing firms with December fiscal year listed on KOSDAQ. The degree of R&D expenditure was measured by R&D intensity. The efficient R&D situation is measured as the decline stage firms in the KOSDAQ market, which are relatively smaller than the KOSPI market. Findings - Firms in the decline phase and high R&D intensity showed the cost stickiness. Because these firms anticipate an optimistic future, they do little to cut current costs even if their current sales decrease. Research implications or Originality - Firstly, it is confirmed that both the extent of R&D expenditure and the situation in which R&D will be effectively performed are important in the study of cost behavior. Secondly, we present a new perspective on strategy research that favors the use of cost advantage strategy related to cost anti-stickiness for the decline firms.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

An Experimental Study on the Flexural Behavior of Reinforced High-Strength Concrete Beams Using Belite Cement (Belite 시멘트를 사용한 고강도 철근콘크리트 보의 휨 거동에 관한 실험연구)

  • Han, Sang-Hoon;Koo, Bong-Kuen;Kim, Gee-Soo;Cho, Hong-Dong;Juen, Chea-Man
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.221-230
    • /
    • 1999
  • A study was conducted to investigate the flexural behavior of reinforced high-strength concrete beams using Belite cement. In this study, fourteen reinforced Belite and control beams were tested. The major experimental variables are compressive strength(350kgf/$cm^2$ and 600kgf/$cm^2$)of concrete and reinforcement ratios(0.0086~0.0345). They were tested by three point loading method. Comparing with flexural behavior of normal reinforced concrete beams, the investigation were to : (1) determine experimentally the load-displacement relationships and the strain distribution on the section of test beams : (2) determine experimentally the moment-curvature and the load-neutral axis relationship of Belite ; (3) investigate the flexural ductility of Belite ; (4) estimate the ratio of the capacities of nominal moment strength as a function of ACI to as a experiment. From the test results, the flexural behavior of reinforced high-strength concrete beams using Belite cement are similar to flexural behavior of normal reinforced concrete beams.

3-D Behavior of Adjacent Structures in Tunnelling Induced Ground Movements (터널 굴착에 따른 지반 및 인접구조물의 3차원 거동)

  • 김찬국;황의석;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.663-670
    • /
    • 2003
  • Urban tunnelling need to consider not only the stability of tunnel itself but also the ground movement regarding adjacent structures. This paper present 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

Behavior Engine for WebGL-based Interactive Contents (WebGL 기반의 상호작용 콘텐츠를 위한 행위 엔진)

  • Seo, Jin-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.862-865
    • /
    • 2011
  • WebGL is a cross-platform web standard for a low-level 3D graphics API based on OpenGL ES 2.0 and presents 3D graphics in web browsers without installing extra plug-ins. The reason that WebGL is notable is because it is included in the HTML5 standard which is getting the spotlight as a next-generation RIA(Rich Internet Application) platform for variable devices such as PCs, smart phones, table PCs, and smart TVs. In this research, we would like to introduce and develop a behavior engine for easy and rapid authoring of complicated interactions and 3D object's behavior models in WebGL-based contents.

  • PDF

Real-time Measurement System for 3D Motion of a Body (구조물의 운동에 대한 실시간 측정시스템 개발)

  • Kim, Wonjin;Yoon, Hyesung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.428-434
    • /
    • 2014
  • Measurement of the absolute displacement of the moving machinery components in three-dimensions (3D) is of critical functional importance. This paper describes the system that measures motion associated with six degrees-of-freedom in 3D. Wire-sensors are used to estimate the positions of an object in a 3D Cartesian coordinate system, based on the values of their initial position and the measured values. For inducing the transfer function, which represents the motion of an object, the number of the minimum measurement points is determined. Also, the experimental measuring device is configured to visualize the behavior of a rectangular object in real-time. The software for measuring the six types of motions is directly programmed using a commercial software.

THE CRASH BEHAVIOR ANALYSIS OF TRAIN VIRTUAL TESTING MODEL

  • Kim, Seung-Rok;Goo, Jung-Seo;Kwon, Tae-Soo;Kim, Ki-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.590-595
    • /
    • 2007
  • It is important to predict the collision behavior of a train consist to improve its crashworthiness. To analyze crash behavior of train, four kinds of methods are mainly used so far. The first is method using multibody dynamics to predict the gross motion of the train set. The second uses 3D FE model to apply the section analysis method in order. The third is used to deduce design specification and evaluate the crashworhiness of a train by using 1D model. The last is to constitute 2D model to check overriding and coupling devices. The train evaluation procedures are so complex that it is difficult to understand or deal with. In this study, VTM for railway train was introduced to simplify the procedures. VTM involves 3D models, 1D models and dynamic components such as suspension and coupling. The method using hybrid concept model makes it possible to do all the things that are mentioned above. To analyze crash behavior tendency of VTM, the model was simulated and the simulation results were discussed.

  • PDF

Study on the Combustion Characteristics of Methanol Fuel Droplet (Methanol 연료 액적의 연소 특성에 관한 연구)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet burning, extinction process and flame behavior of methanol fuel and improve the ability of theoretical prediction of these phenomena. For the improved understanding of these phenomena, this paper presents the experimental results on the methanol droplet combustion conducted under various initial droplet diameters ($d_0$), ambient pressure ($P_{amb}$), and oxygen concentration ($O_2$) conditions. To achieve this, the experimental study was conducted in terms of burning rate (K) with normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.