• Title/Summary/Keyword: 3-D VOF method

Search Result 35, Processing Time 0.026 seconds

Numerical Study on Liquid Sloshing in the Three-dimensional Rectangular Tank with Various Baffle Heights (배플의 높이 변화에 따른 3 차원 사각 탱크 내부의 슬로싱 현상에 관한 수치적 연구)

  • Lee, Chang-Yeol;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.38-46
    • /
    • 2010
  • This study aims at investigating the effect of the baffle height on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finite-volume method which has been well verified by comparing with the results of the relevant previous researches. The ratio of the baffle height ($h_B$) to filling level (h) has been changed in the range of $0{\leq}h_B/h{\leq}1.2$ to observe the effect on the impact loads on the side wall and free surface behavior. Generally, as baffle height increases, the impact pressure on the wall decreases and the deformation of free surface becomes weaker. However it seemed that a critical ratio of the baffle height existed to reveal the lowest impact pressure on the wall. Consequently, $h_B/h=0.8$ among $h_B/hs$ considered in the study showed the lowest impact pressure.

Effect of Chamfering Top Corners on Liquid Sloshing in the Three-dimensional Rectangular Tank (챔퍼가 3차원 사각 탱크 내부의 액체 슬로싱에 미치는 영향)

  • Jung, Jae-Hwan;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.508-516
    • /
    • 2010
  • This study aims at investigating the effect of the chamfer on the liquid sloshing in the three-dimensional (3D) rectangular tank. In order to simulate the 3D incompressible viscous two-phase flow in the 3D tank with partially filled liquid, the present study has adopted the volume of fluid (VOF) method based on the finitevolume method which has been well verified by comparing with the results of the relevant previous researches. The effects of the chamfering top corners of the tank on the liquid sloshing characteristics have been investigated. The angle of the chamfering top corners (${\theta}$) has been changed in the range of $0^{\circ}{\leq}{\theta}{\leq}60^{\circ}$(${\Delta}{\theta}=15^{\circ}$) to observe the free surface behavior, and the effect on wall impact load. Generally, as the angle of the chamfering top corners increases, the impact pressure on the upper knuckle point decreases. However it seemed that a critical angle of the chamfering top corners exists to reveal the lowest impact pressure on the wall.

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Numerical Simulation of NIL Process Based on Continuum Hypothesis (연속체 가정을 통한 NIL 공정의 전산모사)

  • Kim, Seung-Mo;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.532-537
    • /
    • 2007
  • Nano imprint lithography(NIL) is a cost-efficient, high-throughput processing technique to transfer nano-scale patterns onto thin polymer films. Polymers used as the resist include UV cured resins as well as thermoplastics such as polymethyl-methacrylate(PMMA). In this study, an analytic investigation was performed for the NIL process of transferring nano scale patterns onto polymeric films. Process optimization calls for a thorough understanding of resist flow during the process. We carried out 2D and 3D numerical analyses of resist flow during NIL process. The simulation incorporated continuum-hypothesis and the effects of surface tension were taken into account. For a more effective prediction of free surface, fixed grid scheme with the volume of fluid (VOF) method were used. The simulation results were verified with experimental results qualitatively. And the parametric study was performed for various process conditions.

  • PDF

A Numerical Simulation of Wave Run-up Around Circular Cylinders in Waves (파랑중 원형 실린더 주위 Wave Run-up 시뮬레이션)

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Seo, Kwang-Cheol;Koo, Bon-Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.750-757
    • /
    • 2016
  • This study presents the wave run-up height around single and multiple surface-piercing cylinders according to wave period and steepness. In order to simulate 3D incompressible viscous two-phase turbulent flow, the present study employed a volume of fluid (VOF) method with realizable $k-{\varepsilon}$ turbulence model based on commercial Computational Fluid Dynamics (CFD) software, "STAR-CCM". The wave periods at model scale were 1.269s and 1.692s for a single cylinder and 1.716s for multiple cylinders. In each case, wave steepness of has 1/30 and 1/16 were used, respectively. Consequently, the results for wave run-up height with regard to wave steepness and period were compared with those of relevant previous experimental studies. The numerical simulation results showed a good qualitative agreement with experiments.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Syudy on the dynamic Stability of Ground Armored Moving Vehicle during cruising river (지상 전투차량의 수상 추진 시 동적 안정성에 대한 연구)

  • Ahn, Tai-Sul;Lee, Kyung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.252-255
    • /
    • 2008
  • In this study, the characteristics of crossing a river of Ground Armored Vehicle (GAV) were evaluated by numerical method and real size tests. 3-D hybrid mesh systems were constructed by 3-D models of the GAV, and a commercial software, FLUENT, was used in numerical analysis. In order to deal with multi-phase problem (air and water), Volume Of Fluid (VOF) method was used, and Moving and Deforming Mesh (MDM) was adapted for unsteady motion of GAV. There were two steps in this research. Firstly, stability of the GAV which cruised a river was evaluated by changing several shapes of water-proof-front-wing of the GAV in steady state, and compared results (free surface shape and drag value in 10km/h) with those of real size tests. Secondly, results of unsteady analysis considering weight and moment of inertia of the GAV were presented. There were showed a maximum velocity with a designed water jet and dynamic stability including pitch, roll, and yaw moment. Based on these results, the optimal shape of water-proof-front-wing of the GAV was determined for a proto-type of the GAV.

  • PDF

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

Numerical Investigation on the Water Discharge Capability of Tidal Power Plant Using CFD (CFD를 사용한 조력발전소 수문의 통수성능 연구)

  • Kim, Gunwoo;Oh, Sangho;Han, Insuk;Ahn, Sukjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.161-161
    • /
    • 2011
  • The design methodology of the sluice caisson structure is one of important factor that is closely related to the efficiency in tidal power generation. When the sluice caisson is designed to maximize the water discharge capability, it is possible to minimize the number of sluice caissons for attaining the water amount required for achieving the target power generation, which results in reduction of the construction cost for the sluice caisson structure. The discharge capability of sluice caisson is dependent on the geometrical conditions of an apron structure which is placed in both sides of the sluice caisson. In this study, we investigated numerically the variation of water discharge capability of sluice caisson according to the geometrical conditions of apron. Flow fields are simulated with FLOW-3D software using VOF method.

  • PDF

NUMERICAL ANALYSIS OF THE HYDRAULIC CHARACTERISTICS OF ICE-HARBOR TYPE FISHWAY (아이스하버식 어도 내 수리특성에 관한 수치해석연구)

  • Ko, S.H.;Choi, H.K.;Lee, H.B.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.15-19
    • /
    • 2015
  • A fishway is a structure on or around artificial and natural barriers, such as dams, locks and waterfalls, to help fishes' natural migration. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM is used to analyze vertical hydraulic characteristic of rollway of fishway. Volume-of-fluid (VOF) method was used to handle free-surface. It is important to determine the factors influencing flow characteristics in fishway because fish use directional information from the flow characteristics to navigate through fishway. Fishway was modeled in 2-D and the influence of the stream velocity, slope, and weir height of fishway was tested. In results, the transition Reynolds number was $2{\times}10^5{\sim}3{\times}10^5$.