• Title/Summary/Keyword: 3-D Stereoscopic

Search Result 526, Processing Time 0.035 seconds

Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images (입체영상에서 특징의 군집화를 통한 대상객체 분할)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4807-4813
    • /
    • 2012
  • Since the existing methods of segmenting target objects from various images mainly use 2-dimensional features, they have several constraints due to the shortage of 3-dimensional information. In this paper, we therefore propose a new method of accurately segmenting target objects from three dimensional stereoscopic images using 2D and 3D feature clustering. The suggested method first estimates depth features from stereo images by using a stereo matching technique, which represent the distance between a camera and an object from left and right images. It then eliminates background areas and detects foreground areas, namely, target objects by effectively clustering depth and color features. To verify the performance of the proposed method, we have applied our approach to various stereoscopic images and found that it can accurately detect target objects compared to other existing 2-dimensional methods.

Stereoscopic Free-viewpoint Tour-Into-Picture Generation from a Single Image (단안 영상의 입체 자유시점 Tour-Into-Picture)

  • Kim, Je-Dong;Lee, Kwang-Hoon;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • The free viewpoint video delivers an active contents where users can see the images rendered from the viewpoints chosen by them. Its applications are found in broad areas, especially museum tour, entertainment and so forth. As a new free-viewpoint application, this paper presents a stereoscopic free-viewpoint TIP (Tour Into Picture) where users can navigate the inside of a single image controlling a virtual camera and utilizing depth data. Unlike conventional TIP methods providing 2D image or video, our proposed method can provide users with 3D stereoscopic and free-viewpoint contents. Navigating a picture with stereoscopic viewing can deliver more realistic and immersive perception. The method uses semi-automatic processing to make foreground mask, background image, and depth map. The second step is to navigate the single picture and to obtain rendered images by perspective projection. For the free-viewpoint viewing, a virtual camera whose operations include translation, rotation, look-around, and zooming is operated. In experiments, the proposed method was tested eth 'Danopungjun' that is one of famous paintings made in Chosun Dynasty. The free-viewpoint software is developed based on MFC Visual C++ and OpenGL libraries.

3D Display in Mobile Applications

  • Nam, Hui;Kim, Beom-Shik;Park, Chan-Young;Gu, Ja-Seng;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1561-1564
    • /
    • 2006
  • SDI has been developing mobile 3D display for years. For mobile applications, we adapted parallax barrier method. We have developed auto stereoscopic swing 3D display in which people can 3D image in both portrait and landscape mode. Furthermore to increase 3D resolution, we have developed a high resolution 3D display using time division multiplexing parallax barrier method

  • PDF

Coding Technology for Strereoscopic 3D Broadcasting (스테레오 3D 방송을 위한 비디오 부호화 기술)

  • Choe, Byeong-Ho;Kim, Yong-Hwan;Kim, Je-U;Park, Ji-Ho
    • Broadcasting and Media Magazine
    • /
    • v.15 no.1
    • /
    • pp.24-36
    • /
    • 2010
  • Nowadays, digital broadcasting providers have plan to extend their service area to 3D broadcasting without exchanging conventional system and equipments. The maintenance of backward compatibility to conventional 2D broadcasting system is very importance issue on digital broadcasting. To satisfy the requirement, highly-optimized MPEG-2 video encoder is essential for coding left-view and new video coding techniques having higher performance than MPEG-4 AVC/H.264 is needed for right-view since terrestrial broadcasting system has very limited and fixed bandwidth. In this paper, conventional video coding algorithms and new video coding algorithms are analyzed to present a capable solution for the best quality stereoscopic 3D broadcasting keeping backward compatibility within the bandwidth.

Stereoscopic 3D Video Editing Method for Visual Comfort (시각적 편안함을 위한 입체적 삼차원 영상 편집 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.706-716
    • /
    • 2016
  • Each year, significant amounts of Stereoscopic 3D(S3D) contents have been introduced. However, viewers who enjoy the contents readily experience a sense of fatigue on account of various factors. Consequently, many improvement studies have been conducted with the domain of disparity by, for example, simply controlling the disparity or optimizing the reaction speed of viewers' eyes to vergence. However, such studies are limited to the disparity domain and therefore are restricted to a limited number of applications. In this study, we attempted to transcend this limitation and analyzed how a reconstruction in color and brightness, as well as disparity and other important features, affects eyes in terms of vergence adaptation. As a result, we found that, the higher the color similarity is, the better it positively affects vergence adaptation during viewing. Based on this analysis, we propose in this paper a similar color extraction method between takes that are applicable to real-life situations. In an evaluation, the algorithm was applied to publicly available S3D contents and produced a converted color optimized image. The vergence adaptation time of this applied contents was significantly decreased. Also it was minimized through color reconstruction, thereby, being resulted in enhancing viewer concentration.

Interactive Shape Analysis of the Hippocampus in a Virtual Environment (가상 환경에서의 해마 모델에 대한 대화식 형상 분석☆)

  • Kim, Jeong-Sik;Choi, Soo-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.165-181
    • /
    • 2009
  • This paper presents an effective representation scheme for the shape analysis of the hippocampal structure and a stereoscopic-haptic environment to enhance sense of realism. The parametric model and the 3D skeleton represent various types of hippocampal shapes and they are stored in the Octree data structure. So they can be used for the interactive shape analysis. And the 3D skeleton-based pose normalization allows us to align a position and an orientation of the 3D hippocampal models constructed from multimodal medical imaging data. We also have trained Support Vector Machine (SVM) for classifying between the normal controls and epileptic patients. Results suggest that the presented representation scheme provides various level of shape representation and the SVM can be a useful classifier in analyzing the shape differences between two groups. A stereoscopic-haptic virtual environment combining an auto-stereoscopic display with a force-feedback (or haptic) device takes an advantage of 3D applications for medicine because it improves space and depth perception.

  • PDF