• Title/Summary/Keyword: 3-D Sound

Search Result 772, Processing Time 0.033 seconds

The Analysis and Implementation of Realistic Sound using Doppler Effect (도플러 효과를 이용한 실감 음향 분석 및 구현)

  • Yim, Yong-Min;Lim, Heung-Jun;Heo, Jun-Seok;Park, Jun-Young;Do, Yun-Hyung;Lee, Kangwhan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.523-526
    • /
    • 2017
  • In modern recently technology, 3D-Audio is used to enhance immersion in Virtual Reality. This includes interest of people about VR and AR, which related to the field of computer graphics. In fact, a lot of research has been carried out in recent years into a 3D sound field. However, the existing 3D generator device used for virtual reality does not contain Doppler effect occurred by the sound comes to or leave from a listener, while an angle from the listener and the altitude of the source sound are applied. Therefore, this paper present 3D real sound utilizing Doppler effect with spatial-rotation-speaker. We map the source sound in 3D-space into a real space where a user stays and present 3D real sound by manipulating with rotation angle, phase difference, sound output volume of the sound in 3D-space, according to the location of a virtual source sound. Utilizing both natural Doppler effect of rotating sound that is occurring by spatial-rotation-speaker and artificial Doppler effect generated by frequency-modulation of sound quality could improving the virtual reality for sound condition for perspective listening.

  • PDF

A Study of Enemy Aptitude of Pistol Sound Source for Space Estimation (공간평가를 위한 피스톨음원의 적정성에 관한 연구)

  • Shon, Jang-Ryul;Kim, Jung-Joong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.320-328
    • /
    • 2005
  • Last target of architectural acoustics is that people wish to convey voice effectively from the space adaptively in use purpose in building. But, how exactly through space sound (sound source) that wish to deliver from indoor can be passed method to do quantification and evaluate quantity of sound by method to serve indoor architectural acoustics estimation summer period and methods to estimate definition propose. This Study searches special quality of sound source about MLS signal that is occurred short-answer sound source (pistol sound source) and nondirectional speaker among indoor sound estimation method, and measure and analyzed reverberation time (RT60), definition (C80, D50) by regulation of each ISO 3382 in age place (classroom, hall, gymnasium). Analysis result and sound factor among could know that d of two sound sources converges in measurement error extent about reverberation time (RT60) of analysis incidental and sound factors and value shows change irregularly about sound factor of D50, C80, pistol sound source judged there is problem. Also, could know that problem is happened in deflection except reverberation time is in deflection analysis with wave that measure each in fixed distance in branch. Finally, when differ size of sound source and measure about change of sound pressure level in case measure sound pressure level giving difference about 10 dB, sound factor could know that there is no different effect.

A Study on Sound Synchronized Out-Focusing Techniques for 3D Animation (음원 데이터를 활용한 3D 애니메이션 카메라 아웃포커싱 표현 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2014
  • The role of sound in producing 3D animation clip is one of the important factor to maximize the immersive effects of the scene. Especially interaction between video and sound makes the scene expressions more apparent, which is diversely applied in video production. One of these interaction techniques, the out-focussing technique is frequently used in both real video and 3D animation field. But in 3D animation, out-focussing is not easily implemented as in music videos or explosion scenes in real video shots. This paper analyzes the sound data to synchronize the depth of field with it. The novel out-focussing technique is proposed, where the object's field of depth is controlled by beat rhythm in the sound data.

COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD (Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구)

  • Lee, S.H.;Lee, J.B.;Kim, J.U.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

A Multichannel System for Virtual 3-D Sound Rendering (입체음장재현을 위한 멀티채널시스템)

  • Lee Chanjoo;Park Youngjin;Oh Si-Hwan;Kim Yoonsun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.223-226
    • /
    • 2000
  • Currently a multichannel system for virtual 3-D sound rendering is under development. Robust sound image formation and smooth real time interactivity are main design Points. The system utilizes VBAP algorithm as virtual sound image positioning. Overall system settings can be easily configured. We developed software, RIMA. as a driving Program of the system. At this stage, it is possible to position virtual sound images at arbitrary positions in three-dimensional space. The characteristics of the system are discussed. The system has been applied to the KAIST Bicycle Simulator to generate the virtual sound field.

  • PDF

Real-Time 3D Sound Rendering System Implementation for Virtual Reality Environment (VR 환경을 위한 실시간 음장 재현 시스템 구현)

  • Chae, Soo-Bok;Bhang, Seung-Beum;Hwang, Shin;Ko, Hee-Dong;Kim, Soon-Hyob
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.222-227
    • /
    • 2000
  • 본 논문은 VR시스템에서 실시간으로 3D Sound를 Rendering하기 위한 음장재현 시스템구현에 관한 것이다. 2개의 Speaker 또는 헤드폰을 사용하여 음장을 제어할 수 있다. 음장 제어는 레이 트레이싱(Ray Tracing)기법을 이용하여 음장을 시뮬레이션하고 가상 공간의 음장 파라미터를 추출하여 음원에 적용하면서 실시간으로 음장효과를 렌더링한다. 이 시스템은 펜티엄-II 333MHz, 128M RAM, SoundBlaster SoundCard를 사용한 시스템에서 구현하였다. 최종적으로 청취자는 2개의 스피커 또는 헤드폰을 이용하여 3D 음장을 경험하게 된다.

  • PDF

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

Sound Diffusion Control for the Localized Sound Image Using Time Delay (방향 정위된 음원에 시간지연을 이용한 확산감 제어에 관한 연구)

  • 김익형;정의필
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.135-138
    • /
    • 2001
  • Many researchers have developed the techniques of an efficient 3-D sound system based on the psycho-acoustics of spatial hearing with multimedia or virtual reality In this paper, we propose an idea for the improved 3-D sound system using conventional stereo headphones to obtain a better sound diffusion from the mono-sound recorded at an anechoic chamber. We use the HRTF (Head Related Transfer Function) for the sound localization and the wavelet filter bank with time delay for the sound diffusion. We investigate the effects of the 3-B sound depending on the length of time delay at lowest frequency band. Also the correlation coefficient of the signals between the left channel and the right channel is measured to identify the sound diffusion.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF