• Title/Summary/Keyword: 3-D Seismic

검색결과 544건 처리시간 0.03초

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • 제34권6호
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Soil-structure interaction vs Site effect for seismic design of tall buildings on soft soil

  • Fatahi, Behzad;Tabatabaiefar, S. Hamid Reza;Samali, Bijan
    • Geomechanics and Engineering
    • /
    • 제6권3호
    • /
    • pp.293-320
    • /
    • 2014
  • In this study, in order to evaluate adequacy of considering local site effect, excluding soil-structure interaction (SSI) effects in inelastic dynamic analysis and design of mid-rise moment resisting building frames, three structural models including 5, 10, and 15 storey buildings are simulated in conjunction with two soil types with the shear wave velocities less than 600 m/s, representing soil classes $D_e$ and $E_e$ according to the classification of AS1170.4-2007 (Earthquake actions in Australia) having 30 m bedrock depth. Structural sections of the selected frames were designed according to AS3600:2009 (Australian Standard for Concrete Structures) after undertaking inelastic dynamic analysis under the influence of four different earthquake ground motions. Then the above mentioned frames were analysed under three different boundary conditions: (i) fixed base under direct influence of earthquake records; (ii) fixed base considering local site effect modifying the earthquake record only; and (iii) flexible-base (considering full soil-structure interaction). The results of the analyses in terms of base shears and structural drifts for the above mentioned boundary conditions are compared and discussed. It is concluded that the conventional inelastic design procedure by only including the local site effect excluding SSI cannot adequately guarantee the structural safety for mid-rise moment resisting buildings higher than 5 storeys resting on soft soil deposits.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Numerical Evaluation of Boundary Effects in the Laminar Shear Box System (층 분할된 연성전단상자의 경계효과에 관한 수치해석적 분석)

  • Kim, Jin-Man;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • 제24권8호
    • /
    • pp.35-41
    • /
    • 2008
  • Laminar-shear-boxes are widely used to simulate free-field seismic ground response by using a l-g shaking table or geo centrifuge in geotechnical earthquake engineering. This study numerically modeled and compared the ground responses in the free field, rigid box, and laminar shear box by using a 3-D FEM program. It is found from the numerical simulations that the laminar shear box can simulate the free field ground movement more precisely than the rigid box. However, the laminar shear box underestimated the surface acceleration of the free field ground. It also showed low-frequency characteristics probably because the stiffness and inertia effect of surrounding ground are neglected.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • 제22권3호
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline (지진파 입사방향에 따른 매설관 종방향 응답특성 규명)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • 제16권9호
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • 제44권3호
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

Seismic Evaluation of Low-rise RC Building in korea (국내 저층구조물의 내진성능평가)

  • Park, Jin Hwa;Ahn, Tea Sang;Seo, Hyun Sik;Kim, Sang Dea
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.29-29
    • /
    • 2011
  • 국내에서 기존건축물의 내진성능평가 기법이 연구되기 시작한지 20여 년간 다양한 평가방법이 제안되었다. 그러나, 제안된 평가방법은 미국이나 일본의 평가 방법을 도입 및 수정하는 내용이 주가 되어 국내실정에 맞지 않는 부분도 많이 발견되었다. 따라서 국내에서 제안된 기존 건축물의 내진성능 평가기법, 지진피해예측에 근거한 보강건축물의 합리적인 선정방법 및 이들 건축물에 적합한 내진보강방법 등의 연구는 아직까지 초보적인 단계라고 할 수 있다. 이에 본 연구의 목적은 이러한 평가 기법을 적용한 국내 저층구조물의 내진성능을 평가하는 것이다. 저층구조물의 내진성능을 평가하기 위하여 1988년 내진설계가 도입되기 이전에 건립된 4층 규모의 학교구조물을 해석대상 구조물로 선정하였다. 대상 해석구조물의 내진성능평가는 일본의 내진성능 평가법을 참고하여 평가절차가 다소 복잡한 부분을 국내 실정에 맞게 개선시킨 내진화 우선도 평가방법과 정밀한 내진성능을 평하는 방법으로 세계적으로 널리 사용되고 있는 ATC-40 성능평가방법에서 등가단자유 모델로 변환 과정에서 등가유효감쇠 및 등가유효주기 산정 관계식의 문제점을 개선한 FEMA-440의 선형화 성능평가방법(Linearization Method)을 사용하여 구조물의 성능을 평가하였다. 내진 성능 평가를 위해 현재 전 세계적으로 널리 사용되고 있는 구조물 비선형 전용 해석 프로그램인 Perform-3D를 이용하여 해석을 수행하였다. 본 연구를 통해 기존 저층구조물로 선정한 학교구조물에 대한 내진성능을 평가한 결과, 내진화 우선도 평가법 및 FEMA-440의 내진성능 평가는 유사한 경향의 결과를 나타내었고, 두 평가결과를 요약하면 Y방향은 보와 기둥에 끼인 조적벽체의 영향으로 별도의 내진성능이 향상 보강이 필요없으나, X방향은 창문하부 허리 조적벽 등의 영향으로 다소 취성적인 내진성능을 보유하고 있어 충분한 내진성능 확보를 위한 추가적인 보강이 필요한 것으로 판단된다.

  • PDF

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.