• Title/Summary/Keyword: 3-D Patterned Tire Model3

Search Result 2, Processing Time 0.017 seconds

Finite Element Analysis on Residual Aligning Torque and Frictional Energy of a Tire with Detailed Tread Blocks (트레드 블록을 고려한 타이어의 잔류 복원 토크 및 마찰 에너지에 대한 유한 요소 해석)

  • 김기운;정현성;조진래;양영수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.173-180
    • /
    • 2004
  • The tread pattern of a tire has an important effect on tire performances such as handling, wear, noise, hydroplaning and so on. However, a finite element analysis of a patterned tire with detailed tread blocks has been limited owing to the complexity of making meshes for tread blocks and the huge computation time. The computation time has been shortened due to the advance in the computer technology. The modeling of tread blocks usually requires creating a solid model using a CAD software. Therefore it is a very complicated and time-consuming job to generate meshes of a patterned tire using a CAD model. A new efficient and convenient method for generating meshes of a patterned tire has been developed. In this method, 3-D meshes of tread pattern are created by mapping 2-D meshes of tread geometry onto 3-D tread surfaces and extruding them through tread depth. Then, the tread pattern meshes are assembled with the tire body meshes by the tie contact constraint. Residual aligning torque and frictional energy are calculated by using a patterned tire model and compared to the experimental results. It is shown that the calculated results of a patterned tire model are in a good agreement with the experimental ones.

Characteristic Study of Tire Hydroplaning Phenomenon to Vehicle Velocity (차량 속도에 따른 타이어 수막현상의 특성 연구)

  • Son Jeong-Sam;Lee Hong-Woo;Cho Jin-Rae;Woo Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1307-1314
    • /
    • 2005
  • The most important factor of the traffic accident on the wet road is a tire slip caused by hydroplaning. Meanwhile, hydroplaning characteristics are influenced very greatly by the vehicle velocity, so it is very important to reveal the relation between hydroplaning and the vehicle velocity. Since the experiment study is considerably limited, recently the numerical simulation using finite element method(FEM) and finite volume method(FVM) is widely adopted. In this paper, the effect of the vehicle velocity on the hydroplaning characteristics is investigated through the hydroplaning analysis using MSC/Dytran.