• Title/Summary/Keyword: 3-Chlorophenol

Search Result 74, Processing Time 0.025 seconds

Photocatalytic degradation of organic compounds by 2-ethylimidazole-treated titania under visible light illumination

  • Seo, Jiwon;Jeong, Junyoung;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Titania modified by 2-ethylimidazole (2-EI) (denoted as $2-EI-TiO_2$) demonstrated visible light photocatalytic activity for the degradation of organic compounds. $2-EI-TiO_2$ was a bright brown powder that exhibited similar crystallinity and morphology with the control $TiO_2$. A diffuse reflectance spectrum indicated that $2-EI-TiO_2$ absorbs visible light of all wavelengths. X-ray photoelectron spectroscopy (XPS) confirmed the cationic state of nitrogen species (e.g. Ti-O-N) on the surface of $2-EI-TiO_2$. Visible light-illuminated $2-EI-TiO_2$ degraded $10{\mu}M$ 4-chlorophenol (4-CP) by approximately 85% in 4 h. The photochemical activity of $2-EI-TiO_2$ was selective in targeting the organic compound. The repeated use of $2-EI-TiO_2$ decreased the photocatalytic activity for the 4-CP degradation. Experiments using radical scavengers and oxidant probes revealed that the oxidation by photogenerated holes is responsible for the degradation of organic compounds by illuminated $2-EI-TiO_2$ and the role of $^{\bullet}OH$ is negligible.

A Study for the Effect of Solvent and Temperature on the Retention Behavior of Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀류의 머무름거동에 미치는 용매와 온도의 영향에 관한 연구)

  • Lee Dai Woon;Lee Hoo Keun;Yook Keun Sung;Lee, In Ho;Cho Byung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.503-512
    • /
    • 1993
  • The purpose of this study was to investigate the retention behavior of phenols and to predict their retention in RPLC. The retention data of twenty-five phenols were measured on a $\mu-{Bondapak}\;C_{18}$ and a polymeric $C_{18}$ columns with methanol-water and acetonitrile-water as a mobile phase. From the observation of enthalpy-entropy compensation phenomenon, the following conclusions are drawn with regard to the retention mechanism: 1) the retention mechanism of nitrophenols in different from that of metheyl-and chlorophenols in both mobile phase; 2) in methanol-water mobile phase, the retention mechanism of methyl-and chlorophenols is consistent in the range of methanol-water composition; 3) on the other hand, in the case of acetonitrile-water mobile phase, the retention mechanism depends on the volume fraction of acetonitrile. It means that the retention mechanism can not be explained only by a simple interaction. Based on retention data as compared with two columns, it may be said that the hydrophobic interaction of phenols with polymeric $C_{18}$ column was greater than that with monomeric $C_{18}$ column. The equations for predicting the retention of phenols were derived by using hydrophobic substituent constant $(\pi)$ and the sum of Hammett's constant $(\sigma)$ and Taft's steric constant $(E_s)$.

  • PDF

An Experimental Study on the Removal of Chlorophenol by TiO2/H2O2/UV Using Continuous flow Reactor (연속흐름식 반응기를 이용한 TiO2/H2O2/UV에 의한 클로로페놀 제거(除去)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Sang-Hyup;Park, Joo-Suk;Park, Chung-Hyun;Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.55-64
    • /
    • 1998
  • The degradation efficiency of chlorophenolic compounds in $TiO_2/H_2O_2$ combined system was compared with that of in $TiO_2$ sole system. As a result, the addition of hydrogen peroxide in photocatalytic oxidation reaction greatly enhanced the degradation efficiency of chlorophenolic compounds due to the availability of the hydroxyl radical formed on the $TiO_2$ surface. The hydrogen peroxide under UV illumination produces hydroxyl radicals that appear to be another source of hydroxyl radical formation. These results indicated the $TiO_2/H_2O_2$ combined system shows higher degradation efficiency than the $TiO_2$ sole system. Compared to another oxidation reaction, hydrogen peroxide assisted photocatalytic oxidation is more promising in practical aspect.

  • PDF

Adsorption of THMs and THM Precursors on Activated Carbon Fibers (섬유상활성탄에 의한 THMs 및 THMs 전구물질의 흡착특성)

  • Han, Myung-Ho;Lee, Jin-Sik;Yoon, Yi-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.121-130
    • /
    • 1996
  • Adsorption isotherms of three trihalomethanes(THMs: $CHCl_3$, $CHBrCl_2$ and $CHBr_2Cl$) and the other organics(p-chlorophenol and sucrose)on activated carbon fibers(ACFs) were measured. Adsorption capacities of the ACFs for these THMs were found to be comparable with or slightly larger than those of granular activated car bons(GACs) which have been widely used for trihalomethanes control in drinking water. Also, the breakthrough curve prediction was successfully carried out using a mathematical model on basis of the assumption that the adsorption equilibrium is instantaneously established when a THM solution contacts the ACF. In practice, THM removal from drinking water was investigated at water works using benchscale ACF adsorptJOn columns. The volume of water treated at a space velocity(SV) of about $100h^{-1}$ was approximately 40 l/g-ACF. The practical adsorption capacities of PCP and sucrose in column adsorption were in good agreement with those of theoretically calculated results using the batch adsorption measurments. And the saturation time model of these substrates in the columns was also agreed succesfully with practical measurments.

  • PDF

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

Adsorption of Phenols onto Chemically-Activated Carbons Developed from Wild Cherry Stones

  • Alaya, M.N.;Youssef, A.M.;Karman, M.;Abd El-Aal, H.E.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.188-195
    • /
    • 2006
  • Phosphoric acid-activated carbon WP's and zinc chloride-activated carbons WZ's were developed from wild cherry stones. The textural properties of the activated carbons were determined from nitrogen adsorption data at 77 K and the chemistry of the carbon surface, i.e. the surface carbon-oxygen groups (type and amount) was determined from the base and acid neutralization capacities (Boehm method). The adsorption of phenol, p-nitrophenol, p-chlorophenol, dinitrophenol and dichlorophenol was followed at 298 K. The activated carbons obtained were characterized by high surface area and large pore volumes as well as by high surface concentration of C-O groups. The investigated carbons exhibited high adsorption capacities towards phenols with these capacities increased with the increase of molecular weight and the decrease of the solubility of phenol in water. However, no general relationship could be observed between the adsorption capacities of carbons and any of their textural parameters or their surface chemistry. This may be attributed to the many factors controlling phenol adsorption and the different types and mechanisms of adsorption involved.

  • PDF

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [II] EXPERIMENTAL RESULTS FROM DICHLOROPHENOLS (DCPs)

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.232-240
    • /
    • 2006
  • Polychlorinated naphthalenes (PCNs) formed along with dibenzo-p-dioxin and dibenzofuran products in the slow combustion of dichlorophenols (DCPs) at $600^{\circ}C$ were identified. Each DCP reactant produced a unique set of PCN products. Major PCN congeners observed in the experiments were consistent with products predicted from a mechanism involving an intermediate formed by ortho-ortho carbon coupling of phenoxy radicals; polychlorinated dibenzofurans (PCDFs) are formed from the same interemediate. Tautomerization of the intermediate and $H_2O$ elimination produces PCDFs; alternatively, CO elimination to form dihydrofulvalene and fusion produces naphthalenes. Only trace amounts of tetrachloronaphthalene congeners were formed, suggesting that the preferred PCN formation pathways from chlorinated phenols involve loss of chlorine. 3,4-DCP produced the largest yields of PCDF and PCN products with two or more chlorine substituents. 2,6-DCP did not produce tri- or tetra-chlorinated PCDF or PCN congeners. It did produce 1,8-DCN, however, which could not be explained.

Dechlorination of Individual Congeners in Aroclor 1248 as Enhanced by Chlorobenzoates, Chlorophenols, and Chlorobenzenes

  • Kim, Jong-Seol;Cho, Young-Cheol;Frohnhoefer, Robert C.;Rhee, G-Yull
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1701-1708
    • /
    • 2008
  • Previous investigations showed that three classes of haloaromatic compounds (HACs; chlorobenzoates, chlorophenols, and chlorobenzenes) enhanced the reductive dechlorination of Aroclor 1248, judging from the overall extent of reduction in CI atoms on the biphenyl. In the present study, we further investigated the kind of polychlorinated biphenyl (PCB) congeners involved in the enhanced dechlorination by four isomers belonging to each class (2,3-, 2,5-, 2,3,5-, and 2,4,6-chlorobenzoates; 2,3-, 3,4-, 2,5-, and 2,3,6-chlorophenols; and 1,2-, 1,2,3-, 1,2,4-, and penta-chlorobenzenes). Although the PCB congeners involved in the enhanced dechlorination varied with the HACs, the enhancement primarily involved para-dechlorination of the same congeners (2,3,4'-, 2,3,4,2'-plus 2,3,6,4'-, 2,5,3',4'- plus 2,4,5,2',6'-, and 2,3,6,2',4'-chlorobiphenyls), regardless of the HACs. These congeners are known to have low threshold concentrations for dechlorination. To a lesser extent, the enhancement also involved meta dechlorination of certain congeners with high threshold concentrations. There was no or less accumulation of 2,4,4'- and 2,5,4'-chlorobiphenyls as final products under HAC amendment. Although the dechlorination products varied, the accumulation of ortho-substituted congeners, 2-, 2,2'-, and 2,6-chlorobiphenyls, was significantly higher with the HACs, indicating a more complete dechlorination of the highly chlorinated congeners. Therefore, the present results suggest that the enhanced dechlorination under HAC enrichment is carried out through multiple pathways, some of which may be universal, regardless of the kind of HACs, whereas others may be HAC-specific.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.