• Title/Summary/Keyword: 3-Antenna Method

Search Result 517, Processing Time 0.026 seconds

Design of a Conical Spiral Antenna for Satellite TT&C Applications (위성 TT&C용 원뿔 나선 안테나 설계)

  • Ko Han-Woong;Lee Junwen;Yu Jae-Deok;Kim Se-Yon;Ahn Bierng-Chearl;Park Dong-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.24-38
    • /
    • 2006
  • In this paper, we investigate the design and fabrication of a conical spiral antenna suitable for satellite TT&C applications. The shape of the spiral is optimized using a commercial electromagnetic software for good gain and axial ratio performances over $2.0{\sim}2.3\;GHz$ frequencies. A coaxial infinite balun feeding the spiral is designed using experimental methods. A method for precision fabrication of the spiral is presented. Measurements of the fabricated antenna show satisfactory performances over $2.0{\sim}2.3\;GHz$ such as a reflection coefficient less than -18 dB, a maximum gain greater than 4 dB, a gain greater than 0 dB over angles ${\pm}75^{\circ}$ from the antenna boresight, an axial ratio less than 5 dB over angles ${\pm}90^{\circ}$ from the antenna boresight, a front-back ratio greater than 15 dB.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics for Mobile Handset (단말기용 이중 대역저지 특성을 가지는 초광대역 안테나 설계 및 구현)

  • Cho, Young Min;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this paper, we present a compact planar dual band rejection Ultra Wide Band(UWB) antenna with folded parasitic element. The proposed antenna is consist of a hexagonal planar radiation patch antenna with a folded parasitic element which is located over the top and bottom surface. In contrast with other antenna which rejects single band using one method, folded parasitic element rejects dual band using one simple structure. Owing to folded parasitic element, dual-rejected properties are achieved in the Worldwide Interoperability for Microwave Access(WiMAX), C-band, and Wireless Local Area Network(WLAN) bands. The bandwidth of the proposed antenna was measured as 3.1~10.6 GHz for voltage standing wave ratio(VSWR) less than 2, except for the dual rejection bands of 3.4~4.2 GHz and 5.15~6.00 GHz.

Design and Implementation of CPW-Fed UWB Monopole Antenna (CPW 급전 방식을 이용한 UWB 모노폴 안테나 설계 및 구현)

  • Yu, Ju-Bong;Jeon, Jun-Ho;An, Chan-Kyu;Kim, Woo-Chan;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • In this paper, a novel CPW(Coplanar Waveguide)-fed UWB(Ultra Wide Band) antenna is designed, implemented, and measured for UWB communications. CPW-fed planar antenna has advantages of wide-bandwidth, low-cost and easy interaction with radio frequency front end circuitry. We have used HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for implementation. The proposed antenna showed VSWR(Voltage Standarding Wave Ratio)${\leq}2$ for the frequency band from 3.1 GHz to 10.6 GHz which is used for ultra wide band communication. Measured peak gains are 2.61, 4.95, 2.89, 7.35 dBi at 3, 6, 8, 11 GHz, respectively.

Design and Analysis of Microstrip Line Feed Toppled T Shaped Microstrip Patch Antenna using Radial Basis Function Neural Network

  • Aneesh, Mohammad;Kumar, Anil;Singh, Ashish;Kamakshi, Kamakshi;Ansari, J.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.634-640
    • /
    • 2015
  • This paper deals with the design of a microstrip line feed toppled T shaped microstrip patch antenna that gives dualband characteristics at 4 GHz and 6.73 GHz respectively. The simulation of proposed antenna geometry has been performed using method of moment based IE3D simulation software. A radial basis function neural network (RBFNN) is used for the estimation of bandwidth for dualband at 4 GHz and 6.73 GHz respectively. In RBFNN model, antenna parameters such as dielectric constant, height of substrate, and width are used as input and bandwidth of first and second band is considered as output of the network. To validate the RBFNN output, an antenna has been physically fabricated on glass epoxy substrate. The fabricated antenna can be utilized in S and C bands applications. RBFNN results are found in close agreement with simulated and experimental results.

Design and Implementation of Multiband Internal Antenna for LTE Mobile Handset

  • Cho, Young Min;Jung, Pil Hyun;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.124-132
    • /
    • 2015
  • In this paper, we proposed a multiband internal antenna for LTE mobile handset that could be used for mobile devices. The proposed antenna has a volume of $50mm(W){\times}21mm(L){\times}5mm(H)$, ground plane size is $60mm(W){\times}100mm(L)$, and covers 9 service frequency bands including LTE(Long Term Evolution) band with VSWR(Vlotage Standing Wave Ratio) less than 3. With rapid change of technologies, people wants to include more function into one device. In addition, each country uses different frequency band for traffic service, it is necessary to design multiband antenna for mobile phone since traveling foreign country needs roaming. And if we can cover several services with one antenna, cost and volume needed for antennas are minimized. A HFSS (High Frequency Structure Simulator) of the Ansoft Corporation based on a finite element method is employed to analyze the proposed antenna in the design process and to compare the simulation and experimental results.

High Efficiency Tapered Waveguide Antenna for End-fire Optical Phased Array Device (종단방출형 광위상배열 장치를 위한 고효율 안테나)

  • Byeongchan Park;Nan Ei Yu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.235-240
    • /
    • 2023
  • The optical signal injected into an end-fire optical phased array propagates along the waveguides inside the device and is emitted from the edge of the antenna. In general, reflection and scattering occur at the boundary, thereby reducing the emission efficiency of the optical signal. In this article, we propose a silicon nitride (Si3N4) tapered waveguide antenna structure whose width is tapered toward the emitting edge, achieving high emission efficiency operating at the 1,550 nm wavelength. The Si3N4 tapered waveguide antenna was numerically designed using the 3D finite-difference time-domain method. The optical signal emission efficiency increased from 78% to 96.3%, while reflectance decreased from 22% to 3.7% compared with the untapered waveguide antenna counterpart. This result will not only boost the optical signal intensity but also mitigate optical noise resulting from back reflection along the waveguide in the end-fire optical phased array device.

Designing 3D Antenna Pattern using Target's RCS Pattern (RCS 패턴을 이용한 3차원 안테나 패턴 디자인)

  • Park, Tae-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.194-196
    • /
    • 2022
  • When electromagnetic wave transmitted from the radar antenna hits the target, a specific type of electric field is formed according to the electrical characteristics and appearance of the target, which is called an RCS pattern. There are various commercial programs that calculate the RCS of the target and plot the RCS pattern. For the analysis of large targets such as warships or ships, a program with a high frequency analysis method, which has a faster calculation speed than the low frequency analysis method is suitable. XGTD, a high-frequency analysis program, can quickly plot a two-dimensional RCS pattern for 360 degrees of a target, but a three-dimensional RCS pattern cannot be obtained. In this paper, it is proposed that a method of plotting two-dimensional RCS patterns of a target from various angles using XGTD, generating a three-dimensional RCS pattern using this, and converting it into a three-dimensional antenna pattern file.

  • PDF

A Study on the Identification and Improvement of Dynamic Characteristics of Large Structure by Component Mode Synthesis Method (부분 구조합성법을 이용한 대형구조물의 동특성 규명 및 개선에 관한 연구)

  • 오재응;이정환;임동규
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.327-335
    • /
    • 1994
  • In this paper, to identify the dynamic characteristics of antenna system, the antenna is divided into 4 components and those were analyzed with a conventional FEM package MSC/NASTRAN. Using a Component Mode Synthesis Method, dynamic characteristics of total system is also identified. The Coherence of each component to total system is evaluated by using strain and kinetic component to total system is evaluated by using strain and kinetic energy. The improving strategy of dynamic characteristics is suggested by changing mass and stiffness of large coherence components.

  • PDF

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Compact Quadruple Inverted-F Antenna(QIFA) with Circular Polarization for GPS Receiver (원형 편파를 가지는 GPS 수신용 소형 4중 Inverted-F 안테나 연구)

  • Son, Wang-Ik;Lim, Won-Gyu;Jeong, Won-Seok;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1427-1434
    • /
    • 2008
  • Compact quadruple inverted-f antenna(QIFA) with circular polarization for GPS receiver is proposed. Radiation efficiency is decreased when 4-port antenna is smaller. A new matching method is proposed by considering both a return loss at one port and mutual coupling between ports to increase radiation efficiency. Experimental results show that the proposed QIFA has a 3-dB beamwidth of more than 120 degrees and a front-to-back ratio of more than 15 dB. Also, the QIFA has the peak gain of -2.5 dBic and the axial ratio under 0.5 dB.