• 제목/요약/키워드: 3 dimensional numerical model

검색결과 1,358건 처리시간 0.033초

하구역의 사주 형성 예측을 위한 수치 모델 (Numerical Model for Predicting Sand Bar Formation around River Mouth)

  • 마사미쯔 쿠로이와;유헤이 마쯔바라;요코 스즈키;타카유키 쿠치이시
    • 한국해안·해양공학회논문집
    • /
    • 제26권2호
    • /
    • pp.96-102
    • /
    • 2014
  • 하구역의 지형변화를 예측하기 위해 3차원 해빈 변형 모델을 통한 계산이 수행되었다. 본 모델은 수심적분을 기초로 한 준 3차원 연안흐름 모듈로 구성되며, 해안선의 변화, 부유사의 이송-확산 효과를 고려할 수 있다. 우선 모델의 성능을 확인하기 위해 3차원 해빈 변화 모델이 하구역 사주 형성에 적용되었다. 다음으로 동해에 인접한 Ara 강 하구에 모델이 적용되었다. Ara 강의 사주의 동계 변화가 재현되었으며 계산결과는 현장 관측 결과와 좋은 일치를 나타냈다.

수조 수치실험에 의한 말뚝구조물의 항력계수 산정 (Drag Coefficient Estimation of Pile Type Structures by Numerical Water Basin Experiments)

  • 박일흠;이근효;조영준
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.45-53
    • /
    • 2009
  • RNG $k-{\varepsilon}$ 난류모형이 포함된 3차원 동수역학 수치모형(FLOW-$3D^{(R)}$)을 사용하여 수조 수치실험을 통한 항력계수 산정 가능성을 검토하였다. 물리적 실험으로 항력계수가 알려져 있는 말뚝구조물에 대하여, 사각형 말뚝구조물의 수치해에 의한 항력계수값이 $1.34{\sim}1.52$로 물리적 실험값인 $1.3{\sim}1.5$의 범위와 매우 유사한 결과를 보였다. 원형 말뚝구조물은 0.5$0.75{\sim}0.78$ 정도로서 물리적 실험치와 비교적 잘 일치하였다. 그리고 항력계수값이 알려지지 않은 열을 이룬 말뚝구조물의 경우 항력계수값은 구조물 간의 간섭으로 단일 구조물에 비해 항력계수가 크게 나타났으며, 각 구조물간의 거리비가 작아짐에 따라 구조물이 받는 항력계수값은 증가하는 양상을 보였다.

원자로 격납건물의 3차원 구조해석시스템 (Three-Dimensional Structural Analysis System for Nuclear Containment Building)

  • 김선훈
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.235-243
    • /
    • 2010
  • 본 논문에서는 원자로 격납건물의 3차원 해석을 수행할 수 있는 구조해석 시스템을 구축하여 제시하였다. 구조해석 시스템은 고성능 평판 및 쉘 유한요소를 요소 라이브러리로 추가하였고, 비부착식 텐던과 부착식 텐던의 거동을 정확하게 모사할 수 있는 모델링방법을 포함하고 있다. 이러한 기능을 프로그래밍하고 범용 구조해석프로그램 DIANA에 접목시켜 원자로 격납건물의 비선형해석은 물론이고 내압능력 평가가 가능하다. 본 논문에서 제안한 3차원 구조해석 시스템의 신뢰성을 확인하기 위해 중수로형 원자로 격납건물의 구조해석을 수행하여 다른 기관에서 수행한 축대칭 구조해석 결과와 비교분석하였다.

Heaps 모델을 이용한 천수만 해역의 조류해석 (Analysis of Tidal Current for Cheonsu Bay Using Heaps Model)

  • 박영기
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.245-251
    • /
    • 1995
  • Generally, It is Introduced to well-known other models without considering tidal current of the field. The paper presents field measurements and numerical model solving velocity field of Cheonsu Bay by two-dimensional tidal model. It was proved that this scheme is easy to handle complex topography. Computed results is represented characteristics of tidal current for Cheonsu Bay. The results of the study can be summarized as follows ; 1. Tide form number has 0.21 value. Tidal range estimated 630.3 cm on spring, 454.1 cm on mean and 277.9 cm on neap, respectively 2. Tidal current has semi-diurnal form. Distance of traveling observed 16.6 km on flood and 15.5 km on ebb. 3. Tidal velocity showed reversing current. It was found that tidal velocity above 100 cm/sec is about 20 %. 4. Computed results are in good agreement with the observed data. Applying the algorithm to Cheonsu Bay, velocity fields and dry bank phenomena are simulated well in spite of complex topography. 5. An advanced study on the effects of open boundary conditions should be continuously performed.

  • PDF

Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory

  • Xiaozhong Zhang;Jianfeng Li;Yan Cui;Mostafa Habibi;H. Elhosiny Ali;Ibrahim Albaijan;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.293-306
    • /
    • 2023
  • This article focuses on the study of the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order theory of the tube. The nano-scale tube is simulated using the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as a higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. A parametric study is performed to investigate the effects of different parameters, such as axial and radial FG power indices, porosity parameter, and nonlocal gradient strain parameters, on the buckling behavior of the bi-dimensional functionally graded porous tube. Keywords: Nonlocal strain gradient theory; buckling; Zhang-Fu's tube model; Timoshenko theory; Two-dimensional functionally graded materials; Nanotubes; Higher-order theory.

Numerical simulation of the effect of missile impact on the concrete layers

  • Sarfarazi, Vahab;Abad, Shadman M. Bolban
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.377-384
    • /
    • 2020
  • A two-dimensional particle flow cod (PFC) is used to study the effect of missile impact on the concrete target. For this purpose firstly calibration of numerical model was performed so that tensile strength of numerical models and experimental sample were the same. Secondly, a concrete model was built. The number of concrete layers and the angle of concrete layers related to horizontal axis were changed. Their numbers were 1, 2, 3 and 4. The angles were 0°, 15°, 30°, 45°, 60°, 75° and 90°. A semi-circle missile was simulated at top of the concrete layers. Its velocity in opposite side of Y direction was 100 m/s. three measuring circles were situated at the below the missile in the model to receive the applied force. The load in the missile and measuring circles together with failure pattern were registered at the beginning of the impaction. The results show that concrete layers number and concrete layers angle have important effect on the failure load while the failure pattern was nearly constant in all of the models.

3D numerical model for wave-induced seabed response around breakwater heads

  • Zhao, H.Y.;Jeng, D.S.;Zhang, Y.;Zhang, J.S.;Zhang, H.J.;Zhang, C.
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.595-611
    • /
    • 2013
  • This paper presents a three-dimensional (3D) integrated numerical model where the wave-induced pore pressures in a porous seabed around breakwater heads were investigated. Unlike previous research, the Navier-Stokes equation is solved with internal wave generation for the flow model, while Biot's dynamic seabed behaviour is considered in the seabed model. With the present model, a parametric study was conducted to examine the effects of wave and soil characteristics and breakwater configuration on the wave-induced pore pressure around breakwater heads. Based on numerical examples, it was found that the wave-induced pore pressures at breakwater heads are greater than that beneath a breakwater. The wave-induced seabed response around breakwater heads become more important with: (i) a longer wave period; (ii) a seabed with higher permeability and degree of saturation; and (iii) larger angle between the incident waves and breakwater. Furthermore, the relative difference of wave-induced pore pressure between fully-dynamic and quasi-static solutions are larger at breakwater heads than that beneath a breakwater.

3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구 (NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD)

  • 강석훈;김혁주;정대헌
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

Numerical investigation of the effect of the location of stern planes on submarine wake flow

  • Beigi, Shokrallah M.;Shateri, Alireza;Manshadi, Mojtaba D.
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.289-316
    • /
    • 2020
  • In the present paper, the effect of the location of stern planes on the flow entering the submarine propeller is studied numerically. These planes are mounted on three longitudinal positions on the submarine stern. The results are presented considering the flow field characteristics such as non-dimensional pressure coefficient, effective drag and lift forces on the stern plane, and the wake flow formed at the rear of the submarine where the propeller is located. In the present study, the submarine is studied at fully immersed condition without considering the free surface effects. The numerical results are verified with the experimental data. It is concluded that as the number of planes installed at the end of the stern section along the submarine model increases, the average velocity, width of the wake flow and its turbulence intensity formed at the end of the submarine enhance. This leads to a reduction in the non-uniformity of the inlet flow to the propulsion system.

Physical and Numerical Investigation of Cavitating Flow-Induced Vibration of a Flexible Hydrofoil

  • Wu, Qin;Wang, Guoyu;Huang, Biao
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권3호
    • /
    • pp.188-196
    • /
    • 2017
  • The objective of this paper is to investigate the flow-induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel and the numerical investigations are performed using a hybrid coupled fluid structure interaction model. The results showed that with the decreasing of cavitation number, the vibration magnitude increases dramatically for the cloud cavitation and declines for the supercavitation. The cloud cavitation development strongly affects the vibration response, with the main frequency of the vibration being accordance with the cavity shedding frequency and other two frequencies corresponding to the bending and twisting frequencies.