• 제목/요약/키워드: 3 dimensional numerical model

검색결과 1,358건 처리시간 0.029초

주조공정의 수치해석을 위한 3차원 전산모델 개발에 관한 연구 (A Study on the Development of a Three Dimensional Numerical Model for the Casting Processes)

  • 목진호;;이진호
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1436-1444
    • /
    • 2002
  • A three dimensional numerical model was developed to analyze the mold filling and solidification processes straightforwardly in a casting processes. On the basis of the SIMPLER algorithm, the VOF method and the Equivalent Specific Heat method were adopted to deal with the free surface behavior and the latent heat evolution. The complete model has been validated using exact solutions and experimental results. The importance of three-dimensional effects has been highlighted by comparing the results from the three-dimensional analysis with those given by a two-dimensional analysis.

3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사 (Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment)

  • 홍남식
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

소형 터보제트엔진 연소기의 2차원 전산유체해석 모델 (A TWO-DIMENSIONAL CFD MODEL OF SMALL TURBOJET COMBUSTOR)

  • 이세민;박수형;이창진;이동훈;팽기석;류종혁;유경원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.155-158
    • /
    • 2008
  • A practical modeling approach of a small slinger combustor is proposed and a 2-dimensional axisymmetric computational model is developed. Based on numerical results from the full 3-dimensional configuration, model reduction is achieved toward 2-dimensional axisymmetric configuration. By simplifying the complex model, computing time can be significantly reduced and it makes easy to find effects of geometry modification. Numerical results show that the flow characteristic of 2-D model is quite similar to that of the 3-D configuration.

  • PDF

연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법 (Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement)

  • 조영교;석종환;최린;김성민
    • 한국도로학회논문집
    • /
    • 제18권1호
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구 (Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model)

  • 이광호;백동진;김도삼
    • 해양환경안전학회지
    • /
    • 제18권5호
    • /
    • pp.388-397
    • /
    • 2012
  • 본 연구에서는 3차원수치파동수조에 규칙파뿐만 아니라 안정적인 불규칙파가 조파될 수 있는 새로운 조파시스템 3D-NIT(3-Dimensional Numerical Irregular wave Tank)모델을 제안한다. 그의 타당성을 검증하기 위하여 1) 조파지점에서 계산파형과 목표파형을 비교 검토하고, 2) 경사수심역에 설치된 호안구조물을 대상으로 산정된 기존 월파량에 대한 실험치와 비교 검토하며, 3) 연직원주 구조물에 작용하는 파력 및 구조물에 의한 파랑변형의 해석에 적용하여 기존의 수치 및 수리실험결과와 비교한다. 이상의 결과를 기초로 3D-NIT모델을 경사수심역에 설치된 원주구조물에 작용하는 쇄파력의 해석에 적용하여 입사파고, 구조물의 이격거리 등에 따른 작용쇄파력의 특성을 규명하고, 더불어 국내현장의 특수방파제에 적용하여 반사율, 월파량 등을 검토하였다. 그 결과 본 연구에서 제안하는 3D-NIT모델을 이용한 수치실험결과는 기존의 수리모형실험을 잘 재현하고 있음을 확인하였고 복잡한 형상을 갖는 해안구조물의 해석에 적용할 수 있음이 확인되었다.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

선인장 형태의 한국형 인공심장 내 3차원 혈류의 수치적 해석 (Numerical analysis of blood flow in the cactus type KTAH)

  • 박명수;고형종;민병구;심은보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.695-696
    • /
    • 2002
  • Three-dimensional blood flow in the sac of the KTAH(Korean total artificial heart) is simulated using fluid-structure interaction model. The aim of this study is to delineate the three-dimensional unsteady-blood flow in the sac of KTAH. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. The numerical method employed in this study is the finite element software called ADINA. Fluid-structure interaction model between blood and sac is utilized to represent the deformation of the sac by the rigid moving actuator. Three-dimensional geometry of cactus type KTAH is chosen for numerical model with prescribed pressure boundary condition on the sac surface. Blood flow is generated by the motion of moving actuator and strongly interacts with the solid material surrounding blood. High shear stress is observed mainly near the inlet and outlet of the sac.

  • PDF

홍수지도 제작을 위한 홍수범람정보의 3차원 가시화 (Three-Dimensional Visualization of Flood Inundation for Local Inundation Map)

  • 이진우;김형준;조용식
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.179-182
    • /
    • 2008
  • This study simulated the flood inundations of the Nakdong River catchment running through Yangsan, a small city located in the south eastern area of Korea by using the depth averaged two-dimensional hydrodynamic numerical model. The numerical model employs the staggered grid system including moving boundary and a finite different method to solve the Saint-Venant equations. A second order upwind scheme is used to discretize the nonlinear convection terms of the momentum equations, whereas linear terms are discretized by a first order leap-frog scheme(Cho and Yoon, 1998). The numerical model was applied to a real topography to simulate the flood inundation of the Yangsan basin. The numerical results for urban district are visualized in three dimension. These results can be essentially utilized to construct the three dimensional inundation map after building the GIS-based database in local public organizations in order to protect the life and property safely.

  • PDF

공진장치에 의한 고립파의 제어에 관한 연구 (A Study on the Control of Solitary Waves by Resonator)

  • 이광호;범성심;김도삼;박종배;안성욱
    • 한국해안·해양공학회논문집
    • /
    • 제24권1호
    • /
    • pp.48-57
    • /
    • 2012
  • 본 연구에서는 고립파를 저감시키기 위한 저감공으로 본문 중에서 제시하는 공진장치를 직선배치된 기존의 방파제와 직사각형항만의 입구부에 각각 부착하고, 이에 따른 고립파의 제어능을 검토하기 위해 3차원수리모형 실험 및 3차원수치해석을 수행하였다. 수치해석에서는 3차원수치파동수조를 이용하는 3차원혼상류해석법의 TWOPM-3D를 적용하였고, 얻어진 수치해석결과와 수리실험결과를 비교 분석하여 본 수치해석법의 타당성을 검증하였다. 또한, 공진장치가 부착되지 않은 경우와 대비 고찰하여 고립파의 제어에 대한 공진장치의 제어능을 다각도로 검토한 결과, 그의 유효성을 충분히 확인할 수 있었다.

일체형 하천호안블럭의 개발 및 모형실험 적용 (Invention and Hydraulic Model Test of Combined Block System in River Bank Protection)

  • 장석환;이창해;박상우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.449-453
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of Grass Concrete which is newly developed in-situ block system. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for before and after vegetation and the effects were analyzed after reviewing the results. In consequence, the water velocities were observed to decrease meanly 19.1%, and the water depth were determined to increase meanly 27.8% in case of the of design flood, $Q=200m^3/sec$. Moreover, the velocities were produced reduction effects of 27.2%, and the water levels were derived from addition effects of the highest 31.3% in case of the probability maximum flood(PMF), $Q=600m^3/sec$. To verifying the hydraulic physical modeling, the numerical modeling was conducted for a close examination of before and after vegetation. HEC-RAS model was for 1 dimensional numerical analysis and RMA-2 was for 2 dimensional numerical analysis. The results of the numerical simulation, under the condition of roughness coefficient calibration, shows similar results of the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF