• Title/Summary/Keyword: 3 dimensional modeling

Search Result 1,366, Processing Time 0.026 seconds

Parametric Modeling of a Screw Fabricated by Turning (선삭가공으로 제작되는 나사형상의 3차원 파라메터릭 모델)

  • Kim, Ho-Chan;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.62-68
    • /
    • 2012
  • Geometry of a screw fabricated by a turning process determined by the shape of the tool, feed rate of the tool and rotation speed of the spindle. Therefore, computing the exact geometry of the screw is very important to perform a simulation on machining or an evaluation of the workpice quality. In this paper, a new mathematical geometry model of the 3 dimensional screw is fabricated by turning process introduced for the exact geometry computation. Becasue model has a parametric formulation, it is easy to process for a CAD geometry or apply for a machining simulation. Also, it can be applied to process planning because it gives precise machined geometry on whole the 3 dimensional surface of the screw. This paper introduces a new parametric model of a geometry for screw fabricated by turning process. As an application, a simulation software for the 3 dimensional screw surface is developed and evaluated for several manufacturing parameters.

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

Noise Source Localization using 3 Dimensional Spherical Probe (3 차원 구형탐촉자를 이용한 소음원 탐지)

  • Na, H.S.;Kim, Y.G.;Choi, K.Y.;Patrat, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1704-1709
    • /
    • 2000
  • This paper proposes a spherical probe allowing acoustic intensity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has non-linear properties. In this paper, we introduce the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with several tests.

  • PDF

A Study on the 3D Reconstruction and Representation of CT Images (CT영상의 3차원 재구성 및 표현에 관한 연구)

  • 한영환;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 1994
  • Many three-dimensional object modeling and display methods for computer graphics and computer vision have been developed. Recently, with the help of medical imaging devices such as computerized tomography, magnetic resonance image, etc., some of those object modeling and display methods have been widely used for capturing the shape, structure and other properties of real objects in many medical applications. In this paper, we propose the reconstruction and display method of the three-dimensional object from a series of the cross sectonal image. It is implemented by using the automatic threshold selection method and the contour following algorithm. The combination of curvature and distance, we select feature points. Those feature points are the candidates for the tiling method. As a results, it is proven that this proposed method is very effective and useful in the comprehension of the object's structure. Without the technician's responce, it can be automated.

  • PDF

Two-Dimensional Resistivity Modeling by Finite Element Method (유한요소법에 의한 2차원 비저항 모델링)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.283-292
    • /
    • 1986
  • Finite element method with linear triangular and bilinear rectangular elements is applied to solve the three-dimensional potential distribution due to a point source of current located in or on the surface of the earth containing arbitrary two-dimensional resistivity distribution. The modeling technique developed in this paper is flexible to model conductive inhomogeneity and surface topographies, and more accurate to evaluate surface potentials than the conventional techniques using finite difference method. Since it is possible to reduce nodal points with acceptable accuracy, this modeling technique is very efficient and economic in terms of execution time and core space. A few geologic structures adequate to demonstrate above features are simulated in this paper.

  • PDF

Examination of Frequency Dependence of Iron Loss in Magnetic Field Analysis

  • Masato Enokizono;Yuji Fujita
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.3
    • /
    • pp.59-63
    • /
    • 2001
  • This paper presents a new modeling of the two dimensional magnetic property in soft magnetic materials for the magnetic field computations. In this modeling an approximate treatment is introduced to expand the applicable exciting frequency range. The result shows that the new modeling presented here is very useful in simplicity of magnetic field analysis.

Design and Implementation of Building Control System based 3D Modeling (3D 모델링 기반 빌딩관제시스템의 설계 및 구현)

  • Moon, Sang Ho;Kim, Byeong Mok;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.673-682
    • /
    • 2020
  • Buildings are becoming more and more high-rise and large-scale in recent years, so in the event of a disaster such as a fire, enormous human and economic damage is expected. Therefore, management, security, and fire control are essential for large buildings in the city. Because these large buildings are very complex outside and inside, they need a three-dimensional control based on 3D modeling rather than a simple flat-oriented control. To do this, this paper designed and implemented a building control system based on 3D modeling. Specifically, we designed a 3D building / facility editing module for 3D modeling of buildings, a 3D based control module for building control, and a linkage module that connects information such as firefighting equipment, electrical equipment and IoT equipment. Based on this design, a building control system based on 3D modeling was implemented.

Design of Three Dimensional Spatial Topological Relational Operators (3차원 공간 위상 관계 연산자의 설계)

  • Kim, Sang-Ho;Kang, Gu;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.211-220
    • /
    • 2003
  • As Geographic Information Systems represent three dimensional topological information, The Systems provide accurate and delicate services for users. In order to execute three dimensional topological operations, a dimensional transformation and heterogeneous spatial models should be used. However, the existing systems that use the dimensional transformation and the heterogeneous models, is not only difficult to operate the spatial operators, but also happened to support non-interoperability. Therefore, in order to solve the problems, we proposed three dimensional spatial object models that supported two dimensional object models and implemented them to show validity of the proposed models. When designing the three dimensional topological operators, we used 3DE-9IM which extended DE-9IM to support three dimensional concepts, and implemented operators on the component environment with object oriented concepts. The proposed three dimensional spatial object models and topological operators can support interoperability between systems, and execute spatial queries efficiently on three dimensional spatial objects.

Finite Element Analysis for Lower End Fitting using 3-D Solid Modeler (3-D 솔리드모델러를 이용한 원자료 핵연료 하단고정체의 유한요소 해석)

  • 이상순;홍현기;문연철;전경락
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.3-9
    • /
    • 2001
  • In this study, the geometric modeling has been conducted for the current lower end fitting and 2 candidates using three-dimensional solid modeler, Solidworks. Then, the three-dimensional stress analysis using the finite element method has been performed. The evaluation for the mechanical integrity of 2 candidates has been performed based on the stress distribution obtained from the finite element analysis.

  • PDF

Examination of Two-Dimensional Magnetic Properties in a 5-Leg-Different- Volume- V-Connection- Transformer Core

  • Urata Shinya;Shimoji Hiroyasu;Todaka Takashi;Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.243-247
    • /
    • 2005
  • The Different-volume- V-connection transformer is known as an electric power source that can supply 3-phase electric power and single-phase electric power at the same time. Usually, we use two single-phase transformers that have different volumes. In this paper, we propose the use of a 3-phase 5-leg transformer with the different-volume- V-connection. And, we examine the magnetic properties of the 5-leg core model with the different-volume- V-connection. The magnetic properties of cores with the different-volume- V-connection are compared with those with the delta-connection. In order to express the magnetic anisotropy of the core materials and to calculate the iron loss directly, the two-dimensional vector magnetic property is considered with the E&SS modeling in the simulation.