• Title/Summary/Keyword: 3 dimensional conformal radiation therapy

Search Result 74, Processing Time 0.029 seconds

Reduction of Patient Dose in Radiation Therapy for the Brain Tumors by Using 2-Dimensional Vertex or Oblique Vertex Beam Technique

  • Kim, Il-Han;Chie, Eui-Kyu;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.225-231
    • /
    • 2003
  • Up-front irradiation technique as 3-dimensional conformation, or intensity modulation has kept large proportion of brain tumors from being complicated with acute radiation reactions in the normal tissue during or shortly after radiotherapy. For years, we've cannot help but counting on 2-D vertex beam technique to reduce acute reactions in the brain tumor patients because we're not equipped with 3-dimensional planning system. We analyzed its advantages and limitations in the clinical application. From 1998 to 2001, vertex or oblique vertex beams were applied to 35 patients with primary brain tumor and 25 among them were eligible for this analysis. Vertex(V) plans were optimized on the reconstructed coronal planes. As the control, we took the bilateral opposed techniques(BL) otherwise being applied. We compared the volumes included in 105% to 50% isodose lines of each plan. We also measured the radiation dose at various extracranial sites with TLD. With vertex techniques, we reduced the irradiated volumes of contralateral hemisphere and prevented middle ear effusion at contralateral side. But the low dose volume increased outside 100%; the ratio of V to BL in irradiated volume included in 100%, 80%, 50% was 0.55+/-0.10, 0.61+/-0.10, and 1.22+/-0.21, respectively. The hot area within 100% isodose line almost disappeared with vertex plan; the ratio of V to BL in irradiated volume included in 103%, 105%, 108% was 0.14+/-0.14, 0.05./-0.17, 0.00, respectively. The dose distribution within 100% isodose line became more homogeneous; the ratio of volume included in 103% and 105% to 100% was 0.62+/-0.14 and 0.26+/-0.16 in BL whereas was 0.16+/-0.16 and 0.02+/-0.04 in V. With the vertex techniques, extracranial dose increased up to $1{\sim}3%$ of maximum dose in the head and neck region except submandibular area where dose ranged 1 to 21%. From this data, vertex beam technique was quite effective in reduction of unnecessary irradiation to the contralateral hemispheres, integral dose, obtaining dose homogeneity in the clinical target. But it was associated with volume increment of low dose area in the brain and irradiation toward the head and neck region otherwise being not irradiated at all. Thus, this 2-D vertex technique can be a useful quasi-conformal method before getting 3-D apparatus.

Effect of Iterative-metal Artifact Reduction (iMAR) at Tomotherapy: a Phantom Study (토모테라피에서 반복적 금속 인공물 감소 알고리즘의 유용성 평가: 팬톰 실험)

  • Daegun, Kim;Jaehong, Jung;Sungchul, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.709-718
    • /
    • 2022
  • We evaluated the effect of high-density aluminum, titanium, and steel metal inserts on computed tomography (CT) numbers and radiation treatment plans for Tomotherapy. CT images were obtained using a cylindrical TomoPhantom comprising cylindrical rods of various densities and metal inserts. Three CT image sets were evaluated for image quality as the mean CT number and standard deviation. Dose evaluation also performed. The reference values did not significantly differ between the CT image sets with the corrected metal inserts. The higher-density material exhibited the largest difference in the mean CT number and standard deviation. The conformity index at Iterative-Metal Artifact Reduction (iMAR) was approximately 20% better than that of non-iMAR. No significant target or organ at risk dose difference was observed between non-iMAR and iMAR. Therefore, iMAR is helpful for target or organ at risk delineation and for reducing uncertainty for three-dimensional conformal radiation therapy in Tomotherapy.

Gemcitabine-based Concurrent Chemoradiotherapy Versus Chemotherapy Alone in Patients with Locally Advanced Pancreatic Cancer

  • Wang, Bu-Hai;Cao, Wen-Miao;Yu, Jie;Wang, Xiao-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2129-2132
    • /
    • 2012
  • Objective: To explore improved treatment by retrospectively comparing survival time of gemcitabine-based concurrent chemoradiotherapy (GemRT) versus chemotherapy (Gem) alone in patients with locally advanced pancreatic cancer (LAPC). Methods: From January 2005 to June 2010, 56 patients with LAPC from Subei People's Hospital were treated either with Gem (n=21) or GemRT (n=35). Gem consisted of 4-6 cycles gemcitabine alone (1000 mg/m2 on Days 1, 8, 15, 28-day a cycle). GemRT consisted of 50.4Gy/28F radiotherapy with concurrent 2 cycles of gemcitabine (1000 $mg/m^2$ on days of radiation 1, 8, 15, 21-day a cycle). Radiation was delivered to the gross tumor volume plus 1-1.5 cm by use of a three-dimensional conformal technique. The follow-up time was calculated from the time of diagnosis to the date of death or last contact. Kaplan-Meier methodology wes used to evaluate survival. Results: Patient characteristics were not significantly different between treatment groups. The disease control rate and the objective response rate of GemRT versus Gem was 97.1% vs 71.4%, 74.3% vs 38.1%. The overall survival (OS) was significantly better for GemRT compared to Gem (median 13 months versus 8 months; 51.4% versus 14.3% at 1 year, respectively). Conclusion: Radiation therapy at 50.4Gy with 2 concurrent cycles of gemcitabine results in favorable rates of OS. Concurrent chemoradiotherapy should be the first choice for patients with LAPC.

Treatment outcome of hepatic re-irradiation in patients with hepatocellular carcinoma

  • Seol, Seung Won;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Oh, Dongryul;Noh, Jae Myoung;Cho, Won Kyung;Paik, Seung Woon
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.276-283
    • /
    • 2015
  • Purpose: We evaluated the efficacy and toxicity of repeated high dose 3-dimensional conformal radiation therapy (3D-CRT) for patients with unresectable hepatocellular carcinoma. Materials and Methods: Between 1998 and 2011, 45 patients received hepatic re-irradiation with high dose 3D-CRT in Samsung Medical Center. After excluding two ineligible patients, 43 patients were retrospectively reviewed. RT was delivered with palliative or salvage intent, and equivalent dose of 2 Gy fractions for ${\alpha}/{\beta}=10Gy$ ranged from $31.25Gy_{10}$ to $93.75Gy_{10}$ (median, $44Gy_{10}$). Tumor response and toxicity were evaluated based on the modified Response Evaluation Criteria in Solid Tumors criteria and the Common Terminology Criteria for Adverse Events (CTCAE) ver. 4.0. Results: The median follow-up duration was 11.2 months (range, 4.1 to 58.3 months). An objective tumor response rate was 62.8%. The tumor response rates were 81.0% and 45.5% in patients receiving ${\geq}45Gy_{10}$ and $<45Gy_{10}$, respectively (p = 0.016). The median overall survival (OS) of all patients was 11.2 months. The OS was significantly affected by the Child-Pugh class as 14.2 months vs. 6.1 months (Child-Pugh A vs. B, p < 0.001), and modified Union for International Cancer Control (UICC) T stage as 15.6 months vs. 8.3 months (T1-3 vs. T4, p = 0.004), respectively. Grade III toxicities were developed in two patients, both of whom received ${\geq}50Gy_{10}$. Conclusion: Hepatic re-irradiation may be an effective and tolerable treatment for patients who are not eligible for further local treatment modalities, especially in patients with Child-Pugh A and T1-3.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF

Treatment outcomes of radiotherapy for anaplastic thyroid cancer

  • Park, Jong Won;Choi, Seo Hee;Yoon, Hong In;Lee, Jeongshim;Kim, Tae Hyung;Kim, Jun Won;Lee, Ik Jae
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.103-113
    • /
    • 2018
  • Purpose: Anaplastic thyroid cancer (ATC) is a rare tumor with a lethal clinical course despite aggressive multimodal therapy. Intensity-modulated radiotherapy (IMRT) may achieve a good therapeutic outcome in ATC patients, and the role of IMRT should be assessed. We retrospectively reviewed outcomes for ATC treated with three-dimensional conformal radiotherapy (3D-CRT) or IMRT to determine the optimal treatment option and explore the role of radiotherapy (RT). Materials and Methods: Between December 2000 and December 2015, 41 patients with pathologically proven ATC received RT with a sufficient dose of ${\geq}40Gy$. Among them, 21 patients (51%) underwent surgery before RT. Twenty-eight patients received IMRT, and 13 received 3D-CRT. Overall survival (OS) and progression-free survival (PFS), patterns of failure, and toxicity were examined. Results: The median follow-up time for survivors was 38.0 months. The median and 1-year OS and PFS rates were 7.2 months and 29%, 4.5 months and 15%, respectively. Surgery significantly improved the prognosis (median OS: 10.7 vs. 3.9 months, p = 0.001; median PFS: 5.9 vs. 2.5 months, p = 0.007). IMRT showed significantly better PFS and OS than 3D-CRT, even in multivariate analysis (OS: hazard ratio [HR] = 0.30, p = 0.005; PFS: HR = 0.33, p = 0.005). Significantly higher radiation dose could be delivered with IMRT than 3D-CRT ($EQD2_{10}$ 66 vs. 60 Gy, p = 0.005). Only 2 patients had grade III dermatitis after IMRT. No other severe toxicity ${\geq}grade$ III occurred. Conclusion: Patients with ATC showed better prognosis through multimodal treatment. Furthermore, IMRT could achieve favorable survival rates by safely delivering higher dose than 3D-CRT.

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

Small Bowel Sparing Effect of Small Bowel Displacement System in 3D-CRT and IMRT for Cervix Cancer (자궁경부암의 3D-CRT와 IMRT시 소장전위장치의 소장 선량에 대한 영향)

  • Kang, Min-Kyu;Huh, Seung-Jae;Han, Young-Yih;Park, Won;Ju, Sang-Gyu;Kim, Kyoung-Ju;Lee, Jeung-Eun;Park, Young-Je;Nam, Hee-Rim;Lim, Do-Hoon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • Purpose : In radiotherapy for cervix cancer, both 3-dimensioal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) could reduce the dose to the small bowel (SB), while the small bowel displacement system (SBDS) could reduce the SB volume in the pelvic cavity. To evaluate the effect of the SBDS on the dose to the SB in 3D-CRT and IMRT plans, 3D-CRT and IMRT plans, with or without SBDS, were compared. Materials and Methods : Ten consecutive uterine cervix cancer patients, receiving curative radiotherapy, were accrued. Ten pairs of computerized tomography (CT) scans were obtained in the prone position, with or without SBDS, which consisted of a Styrofoam compression device and an individualized custom-made abdominal immobilization device. Both 3D-CRT, using the 4-field box technique, and IMRT plans, with 7 portals of 15 MV X-ray, were generated for each CT image, and proscribed 50 Gy (25 fractions) to the isocenter. For the SB, the volume change due to the SBDS and the DVHs of the four different plans were analyzed using palled t-tests. Results : The SBDS significantly reduced the mean SB volume from 522 to 262 cm$^{3}$ (49.8$\%$ reduction). The SB volumes that received a dose of 10$\~$50 Gy were significantly reduced in 3D-CRT (65$\~$80$\%$ reduction) and IMRT plans (54$\~$67$\%$ reduction) using the SBDS. When the SB volumes that received 20$\~$50 Gy were compared between the 3D-CRT and IMRT plans, those of the IMRT without the SBDS were significantly less, by 6$\~$7$\%$, than those for the 3D-CRT without the SBDS, but the volume difference was less than 1$\%$ when using the SBDS. Conclusion : The SBDS reduced the radiation dose to the SB in both the 3D-CRT and IMRT plans, so could reduce the radiation injury of the SB.

Role of Postoperative Radiotherapy for Patients with Pathological Stage III Non-Small-Cell Lung Cancer after Curative Resection (근치적 절제술 후 병기3의 비소세포성 폐암에서 수술 후 방사선 치료의 역할)

  • Kim, Mi-Young;Wu, Hong-Gyun;Kim, Hak-Jae;Heo, Dae-Seog;Kim, Young-Whan;Kim, Dong-Wan;Lee, Se-Hoon;Kim, Joo-Hyun;Kim, Young-Tae;Kang, Chang-Hyun
    • Radiation Oncology Journal
    • /
    • v.29 no.1
    • /
    • pp.44-52
    • /
    • 2011
  • Purpose: To evaluate the outcomes and prognostic factors of postoperative radiotherapy (PORT) for patients with pathological stage III non-small-cell lung cancer (NSCLC) at a single institution. Materials and Methods: From 2000 to 2007, 88 patients diagnosed as having pathologic stage III NSCLC after curative resection were treated with PORT. There were 80 patients with pathologic stage IIIA and eight patients with pathologic stage IIIB in the AJCC 6th staging system. The majority of patients (n=83) had pathologic N2 disease, and 56 patients had single station mediastinal LN metastasis. PORT was administered using conventional technique (n=76) or three-dimensional conformal technique (n=12). The median radiation dose was 54 Gy (range, 30.6 to 63 Gy). Thirty-six patients received chemotherapy. Radiation pneumonitis was graded by the Radiation Therapy Oncology Group system, and other treatment-related toxicities were assessed by CTCAE v 3.0. Results: Median survival was 54 months (range, 26 to 77 months). The 5-year overall survival (OS) and disease free survival (DFS) rates were 45% and 38%, respectively. The number of metastatic lymph nodes was associated with overall survival (hazard ratio, 1.037; p-value=0.040). The 5-year locoregional recurrence free survival (LRFS) and distant metastasis free survival (DMFS) rates were 88% and 48%, respectively. Multiple stations of mediastinal lymph node metastasis was associated with decreased DFS and DMFS rates (p-value=0.0014 and 0.0044, respectively). Fifty-one relapses occurred at the following sites: 10 loco-regional, 41 distant metastasis. Grade 2 radiation pneumonitis was seen in three patients, and symptoms were well tolerated with anti-tussive medication. Grade 2 radiation esophagitis was seen in 11 patients. There were no grade 3 or more severe complications associated with PORT. Conclusion: Our retrospective data show that PORT for pathological stage III NSCLC is a safe and feasible treatment and could improve loco-regional control. The number of metastatic lymph nodes and stations of mediastinal lymph node metastasis were analyzed as prognostic factors. Furthermore, efforts are needed to reduce distant metastasis, which is a major failure pattern of advanced stage NSCLC.

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF