• Title/Summary/Keyword: 3 dB bandwidth

Search Result 1,003, Processing Time 0.026 seconds

Design and Fabrication of a Dual Polarized Load-bearing Microstrip Antenna (이중편파 하중 지지형 마이크로스트립 안테나 설계 및 제작)

  • 이라미;이정수;박위상;박현철;황운봉
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • A 8$\times$4 microstrip antenna array is designed at 5.3 GHz and its characteristics are investigated with respect to the application in dual polarized synthetic aperture radars. The design is focused on the achievement of a wide bandwidth, a high polarization purity, a low loss, a good isolation and some mechanical requirements suitable for the application. The antenna is fed by a -3 dB tapered feed network, and is composed of dual polarized SSFIP (Strip-Slot-Foam-Inverted Patch) elements with honeycomb and shielding plane. Simulation results for the antenna array are presented and compared with measurements. It is observed that the antenna shows a bandwidth of 80 MHz, a polarization isolation better than 20 dB, an isolation of 40 dB, and good mechanical characteristics.

  • PDF

A Transformer-Matched Millimeter-Wave CMOS Power Amplifier

  • Park, Seungwon;Jeon, Sanggeun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.687-694
    • /
    • 2016
  • A differential power amplifier operating at millimeter-wave frequencies is demonstrated using a 65-nm CMOS technology. All of the input, output, and inter-stage network are implemented by transformers only, enabling impedance matching with low loss and a wide bandwidth. The millimeter-wave power amplifier exhibits measured small-signal gain exceeding 12.6 dB over a 3-dB bandwidth from 45 to 56 GHz. The output power and PAE are 13 dBm and 11.7%, respectively at 50 GHz.

Dual-Band Monopole Antenna Design with Mu-Negative Metamaterial Unit Cell (Mu-Negative Metamaterial 단일 셀을 가진 듀얼 대역 모노폴 안테나 설계)

  • Lee, Sang-Jae;Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • This paper was studied the double-band monopole antenna design with Mu-negative metamaterial unit cell, which operates at 700MHz and 2.45GHz band. Mu-negative unit cell made of the interdigital capacitor structure to operate a double-band antenna by inserting it into an antenna radiator unit. In addition, the parasitic conductor is implemented on the back side of the antenna radiation part, so that the resonance point of the antenna can be controlled and the bandwidth is improved. Finally, we implemented an antenna operating in the 750MHz UHD band and the 2.45GHz WiFi band. The designed antenna has a size of $200{\times}100mm^2$. Experimental results show that the 8dB bandwidth and gain characteristics at 750MHz band are 320MHz(42.7%), 5.28dB, 6dB bandwidth and gain at 2.45GH are 540MHz (21.6%), -0.46dB. From the experimental results, we confirmed that the resonance point with theoretical value is in agreement with experimental value, and the radiation patterns are have the omnidirectional characteristic in both bands.

Performance Analysis of Multicarrier CDMA Systems using MRC Diversity in Fading (페이딩 환경에서 MRC 다이버시티를 이용한 다중반송파 CDMA 시스템 분석)

  • 이정도;오장헌;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.323-328
    • /
    • 2001
  • Multicarrier modulation is a promising technique for mobile communications system, since it has a strong immunity to multipath fading and increasing bandwidth efficiency. In this paper, the performance of MC DS-CDMA/MPSK has been analyzed with that of DS-CDMA/MPSK system using MRC diversity in the same frequency bandwidth. The results show that with no diversity we can see that the BER of about $10^{-5}$ is achieved at $E_b/N_o$ = 25 dB, with diversity is reachable up to 12 dB.

  • PDF

A 0.13 ${\mu}m$ CMOS UWB RF Transmitter with an On-Chip T/R Switch

  • Kim, Chang-Wan;Duong, Quoc-Hoang;Lee, Seung-Sik;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.526-534
    • /
    • 2008
  • This paper presents a fully integrated 0.13 ${\mu}m$ CMOS MB-OFDM UWB transmitter chain (mode 1). The proposed transmitter consists of a low-pass filter, a variable gain amplifier, a voltage-to-current converter, an I/Q up-mixer, a differential-to-single-ended converter, a driver amplifier, and a transmit/receive (T/R) switch. The proposed T/R switch shows an insertion loss of less than 1.5 dB and a Tx/Rx port isolation of more than 27 dB over a 3 GHz to 5 GHz frequency range. All RF/analog circuits have been designed to achieve high linearity and wide bandwidth. The proposed transmitter is implemented using IBM 0.13 ${\mu}m$ CMOS technology. The fabricated transmitter shows a -3 dB bandwidth of 550 MHz at each sub-band center frequency with gain flatness less than 1.5 dB. It also shows a power gain of 0.5 dB, a maximum output power level of 0 dBm, and output IP3 of +9.3 dBm. It consumes a total of 54 mA from a 1.5 V supply.

  • PDF

Design of a Broadband Quasi-Yagi Antenna fed by a Microstrip with a Shorted End (단락종단된 마이크로스트립으로 급전되는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.70-73
    • /
    • 2012
  • In this paper, we introduce a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio of > 2 : 1 and a gain of > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a rectangular patch-type director with large width near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of $90mm{\times}90mm$ and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.41-6.53 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

  • PDF

Optimization of Packaging Design of TWEAM Module for Digital and Analog Applications

  • Choi, Kwang-Seong;Lee, Jong-Hyun;Lim, Ji-Youn;Kang, Young-Shik;Chung, Yong-Duck;Moon, Jong-Tae;Kim, Je-Ha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.589-596
    • /
    • 2004
  • Packaging technologies for a broadband and narrowband modulator with a traveling wave electro-absorption modulator (TWEAM) device were developed. In developing a broadband modulator, the effects of the device and packaging designs on the broadband performance were investigated. The optimized designs were obtained through a simulation with the result that we developed a broadband modulator with a 3 dB bandwidth of 38 GHz in the electrical-to-optical (E/O) response, an electrical return loss of less than -10 dB at up to 26 GHz, an rms jitter of 1.832 ps, and an extinction ratio of 5.38 dB in a 40 Gbps non-return to zero (NRZ) eye diagram. For analog application, the effect of the RF termination scheme on the fractional bandwidth was studied. The microstrip line with a double stub as a matching circuit and a laser trimming process were used to obtain an $S_{11}$ of -34.58 dB at 40 GHz and 2.9 GHz bandwidth of less than -15 dB.

  • PDF

A Super-Wideband Dipole Antenna With a Self-Complementary Structure (자기상보 구조를 갖는 초광대역 다이폴 안테나)

  • Park, Won Bin;Kwon, Oh Heon;Lee, Sungwoo;Lee, Jong Min;Park, Young Mi;Hwang, Keum Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1414-1416
    • /
    • 2016
  • In this paper, a SWB (Super-WideBand) dipole antenna with self-complementary structure is proposed for signal intelligence. The proposed antenna consists of a self-complementary dipole antenna and a tapered balun for balanced feeding. The measured -10 dB reflection bandwidth of the proposed antenna is more than 28:1 (0.73-20 GHz) and 3 dB axial ratio bandwidth is 3.25:1 (1.91-6.22 GHz) with RHCP (Right Hand Circular Polarization) at +z direction. The measured radiation patterns are omni-directional in lower frequency band and bi-directional in higher frequency band. The measured peak gain within -10 dB reflection bandwidth varies from 2.83 dBi to 7.66 dBi.

Wide Band Microstrip line-to-Rectangular Waveguide Transition Using a Radial Probe for Millimeter-wave Applications (밀리미터파 응용을 위해 Radial 프로브 마이크로 스트립-웨이브 가이드 광대역 천이기)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2015
  • In this work, a broadband microstrip (MSL) - to - waveguide (WR12) transition has been presented for millimeter-wave module applications. For improvement of a bandwidth, the radial MSL electrical-probe is designed on the low-loss organic dielectric substrate. The designed and tested characteristics of the proposed transition are characterized in terms of an insertion and return loss. Considering the loss contribution of the cable adapter and waveguide transition for the measurement, the proposed transition loss can be analyzed as -1.88 and -2.01 dB per a transition at 70 and 80 GHz, respectively. The bandwidth of the proposed transition for reflection at -10 dB is 26 GHz at all test frequencies from 67 to 95 GHz. Compared to the state-of-the-art results, improvement of 8.3 % is achieved for the operation bandwidth.

High-reflectivity Tunable Wavelength Filters Incorporating an Apodized Bragg Grating with a High-refractive-index Polymer Layer (고굴절률 폴리머층과 에포다이즈드 브래그 격자를 이용한 고반사 파장 필터)

  • Kim, Eon-Tae;Park, Tae-Hyun;Huang, Guanghao;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.346-350
    • /
    • 2017
  • A tunable filter incorporating an apodized grating with a high-refractive-index polymer layer is demonstrated. In the apodized tunable filter, the reflectivity is decreased compared to that of a uniform grating, because of the gradually decreased grating depth. To increase the reflectivity of the apodized grating, a polymer of high refractive index is adopted for the apodized grating, and then high reflectivity is obtained while maintaining a narrow bandwidth. The apodized tunable filter exhibits a 3-dB bandwidth of 0.51 nm and a 20-dB bandwidth of 1.05 nm, with 98.5% reflection.