• Title/Summary/Keyword: 3 cylinder engine

Search Result 455, Processing Time 0.019 seconds

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

The Research about Engine Speed change Effect on HCCI Engine Combustion by Numerical Analysis (엔진회전속도의 변화가 HCCI엔진연소에 미치는 영향에 관한 수치해석 연구)

  • Lim, Ock-Taeck
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.126-133
    • /
    • 2011
  • In HCCI Engine, combustion is affected by change of compression speed corresponding to engine speed. The purpose of this study is to investigate the mechanism of influence of engine speed on HCCI combustion characteristics by using numerical analysis. At first, the influence of engine speed was shown. And then, in order to clarify the mechanism of influence of engine speed, results of kinetics computations were analyzed to investigate the elementary reaction path for heat release at transient temperatures by using contribution matrix. In results, as engine speed increased, in-cylinder gas temperature and pressure at ignition start increased. And ignition start timing was retarded and combustion duration was lengthened on crank angle basis. On time basis, ignition start timing was advanced and combustion duration was shortened. High engine speed showed higher robustness to change of initial temperature than low engine speed. Because of its high robustness, selecting high engine speed was efficient for keeping stable operation in real engine which include variation of initial temperature by various factors. The variation of engine speed did not change the reaction path. But, as engine speed increased, the temperature that each elementary reaction would be active became high and reaction speed quicken. Rising the in-cylinder gas temperature of combustion start was caused by these gaps of temperature.

A Study on the Effect of Exhaust System Configuration on Scavenging Characteristic of a Four-Cylinder Turbocharged Diesel Engine (배기계 형상이 과급기를 장착한 4실린더 디젤엔진의 소기성능에 미치는 영향에 관한 연구)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Woo;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.35-43
    • /
    • 2006
  • A four-stroke four-cylinder turbocharged diesel engine can be fitted with various types exhaust system. In this paper, the impacts of exhaust system design on scavenging performance and wave action characteristic during valve overlap are investigated by using one-dimensional gas dynamic code. This work shows that a huge reflected exhaust pressure waves which reaches the exhaust port during valve overlap period is crucial design factor which determines quality and quantity of the fresh charge. Hence pressure wave that reaches the exhaust port of the cylinder during the valve overlap sequence should be weakened for good scavenging performance. This paper describes advantages and disadvantages of the various exhaust systems applied to a turbocharged and intercooled 4-cylinder diesel engine system in terms of scavenging efficiency and engine performance. To verify the computational results, experimental comparison has also performed.

Characteristic Analysis of the Damper Cylinder for the Automotive Hydraulic Clutch System (차량용 유압 클러치시스템의 댐퍼실린더 특성해석)

  • Lee, Choon-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.151-158
    • /
    • 2008
  • The clutch system is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to propose an analysis model and investigate the effect of the design variable variations for the hydraulic clutch system. Especially, we studied the effect of damper cylinder parameter variations on the hydraulic clutch system performance.

A Study on Inequality Rate of Lubrication for Motor-driven Cylinder Lubricator by the Electronically Controlled Quill System Equipped with an Accumulating Distributor in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관용 축압분배기 부착 전자제어식 퀼 시스템 모터구동 실린더 주유기의 주유 불균일률에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Bae, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.26-36
    • /
    • 2012
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke diesel engine is of great economic importance. A motor-driven cylinder lubricator for Sulzer RT-flex large two-stroke diesel engines developed by authors is in need of mounting a quill system to lubricate cylinder parts for a smooth operation. In order to apply the common-rail lubricating system to the developed cylinder lubricator as the second research stage, the mechanical quill system with a progressively quantitative distributor (M.D.S.) is improved in the electronically controlled quill system with an accumulating distributor (E.D.S.). In this study, the effects of lubricator motor speed, plunger stroke and cylinder back pressure on oil feed rate and inequality rate are experimentally investigated by applying E.D.S. to the developed cylinder lubricator. It is found that the oil feed rate of E.D.S. is higher than that of M.D.S. because of the increase of delivery speed and volume by changing the role of accumulator in the same experimental condition. It can be also shown that, in E.D.S., the inequality rate is decreased a little or hardly unchanged as the cylinder back pressure and plunger stroke is elevated, while the inequality rate increased in M.D.S.. The inequality rates of E.D.S. and M.D.S. are lowered as the lubricator motor speed is increased.

Influence of piston bowl geometry on the in-cylinder flow of HCCI Engine (HCCI 엔진의 실린더 내 유동에 대한 피스톤 보울 형상의 영향)

  • Nam, Seung Man;Lee, Kye Bock
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.399-405
    • /
    • 2013
  • The gas motion inside the engine cylinder plays a very important role in determining the thermal efficiency of an internal combustion engine. A precise information of in-cylinder three dimensional complex gas motion is crucial in optimizing engine design. Homogeneous charge compression ignition (HCCI) engine is a combustion concept, which is a hybrid between Otto and Diesel engine. The turbulent diffusion leads to increased rates of momentum, heat and mass transfer. The in-cylinder turbulence flow was found to affect the present HCCI combustion mainly through its influence on the wall heat transfer. This study investigates the effect of piston geometry shape on the turbulent flow characteristics of in-cylinder from the numerical analysis using the LES model and the results obtained can offer guidelines of the combustion geometries for better combustion process and engine performance.

Measurement and Analysis of Instantaneous Surface Temperature and Unsteady Heat Flux at Combustion Chamber of DOHC Gasoline Engine ; Cylinder Linder (DOHC 가솔린기관의 연소실 벽표면순간온도 및 비정상 열유속 측정 및 해석(제3보 : 실린더 라이너에 관한 연구))

  • 위신환;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • Instantaneous temperature probes were manufactured by pressing method. By using these probes, the instantaneous surface temperature and unsteady heat flux in the cylinder liner of DOHC engine were measured. The main results are as follows; ⅰ) the instantaneous surface temperature of cylinder liner are affected by the contact of piston ring as well as burning gas. ⅱ) the wall temperature of the siamese portion is much higher than other parts. ⅲ) it was shown that the rising trend of heat flux by burning gas are nearly limited to the 1/2-stroke distance from the top of cylinder liner.

  • PDF

Investigation of In-Cylinder Phenomena in a SI Engine (가솔린 엔진의 연소실내 현상 연구)

  • Kim, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.10-18
    • /
    • 1998
  • To investigate the in-cylinder phenomena in a SI engine with 3 valves and pent-roof type combustion chamber, flow fields, fuel distributions, and flame propagations were measured in a single c!'tinder visualized engine. Flow fields were visualized by PTV system during the intake and compression process. Fuel distributions were measured by PLIF at the various engine conditions including the cold and hot engine conditions and the effect of air-shrouded injector on the fuel distribution was investigated also. In addition, flame propagation patterns were characterized.

  • PDF

A Study on the Application of the Built-in EGR System for Diesel Engine (디젤기관의 내장형 EGR시스템 적용 가능성에 관한 연구)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.398-404
    • /
    • 1999
  • The EGR is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate the intake and exhaust system become complicated. That is a reason why we consider using the built0in EGR system. The built-in EGR is a system which reduces Nox by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust. In this paper characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results the possibility of suing the built-in EGR system was confirmed.

  • PDF

A Study on the Improvment of Engine Performance Simulation Using Multi-Length-Scale Model and MOC (특성곡선법과 다중길이 척도법을 이용한 가솔린 기관의 기관성능시뮬레이션 개선에 관한 연구)

  • 김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.605-616
    • /
    • 2001
  • Generally, there are two methods in researching internal combustion engines. One is by experimental research and the other is by computer simulation. The experimental research has many merits that researchers can get data for engine performance, but it has also some demerit of cost and time. If there is an engine simulation code with accuracy for the solution, it is very convenient to predict the performance and optimum design value of the engine. In this study, engine performance simulation program has been improved to predict the transient variation of properties of gas in cylinder, intake and exhaust manifolds, There total program code was developed to calculate the pressure, flame factor and turbulent intensity, As a result of present study, the authors could predicted the in-cylinder pressure, intake manifold pressure and the engine performance in various conditions. The authors also could easily prepare the tool if optimum design of manifold and in-cylinder geometry.

  • PDF