• Title/Summary/Keyword: 3 cylinder engine

Search Result 456, Processing Time 0.038 seconds

A Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Model Engine (3차원 모형기관 실린더내의 흡입과정 유동에 대한 수치해석)

  • 하각현;김원갑;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1994
  • A model engine having a flat cylinder head and a piston face and an off-center intake valve is investigated in this analysis. Calculation domain is confined to the half of the cylinder with swirl free inlet velocity condition. Due to the absence of measured inlet conditions, the inlet flowrates during induction period are calculated from overall mass and energy conservation requirements. Finite difference equation for velocity and pressure were solved by modified SIMPLER algorithm, standard k-$\varepsilon$turbulence model and hybrid scheme. From the result of prediction, dimensionless velocity distribution and turbulence intensities are investigated at each crank angle.

  • PDF

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design (터보 디젤 엔진용 배기매니폴드의 열변형 해석)

  • Kim, Beom-Keun;Lee, Eun-Hyun;Choi, Bok-Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle (8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화)

  • Kwon, Soon-Hyuk;Kim, Min-Su;Choi, Min-Seon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.

A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle (LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰)

  • Chun, Bongjun;Park, Myungho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

A Study on Performance and Characteristic of Exhaust emission in CNG Dedicated Engine (천연가스 전소기관의 성능 및 배출가스 특성에 관한 연구)

  • 한영출;김경배;오용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.12-17
    • /
    • 2000
  • In this study a heavy duty diesel engine was modified into a 11-liter 6-cylinder SPI CNG dedicated engine, which was tested to investigate the performance and exhaust emission under the maximum load condition as the engine speed was increased in the range of 1,000∼2,200 rpm. The exhaust emission was also measured at D-13 mode as well as AVL-8 mode.

  • PDF

Causes of Top Dead Center Error in Marine Generator Engine Power-Measuring Device (선박용 발전기 엔진 출력 측정 장치의 TDC 오차 발생 원인)

  • Lee, Ji-Woong;Jung, Gyun-Sik;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • Different methods are used for determining the output of engines to obtain the indicated horsepower by measuring the combustion pressure of cylinders, and to obtain the shaft horsepower by measuring the shaft torque. It is difficult to examine the shaft torque using the condition of the cylinder, and the most accurate method used for determining the combustion pressure involves examining the combustion state of the cylinder to evaluate the engine performance and analyze the combustion of the cylinder. During the measurement, the combustion pressure is the most important parameter used for accurately determining the cylinder angle because the cylinder pressure is indicated based on the angle of the crankshaft. In this study, an encoder was used as the crank angle sensor to measure the cylinder pressure on the generator engine of the actual operating ship. The reasons for the differences between the top dead center (TDC) recognized by the encoder (TDCencoder) and the TDC recognized by the compression pressure (TDCcomp) were considered. The dif erences between the TDCcomp and TDCencoder of the cylinders measured at idle running, 25 %, 50 %, and 60 % loads were analyzed to determine for the crankshaft production effect, the crankshaft torsion effect owing to the increased rotational resistance from the increased load, and the coupling damping effect between the engine and generator. It was confirmed that the TDC error occurred up to 3° crank angle as the load of the generator increased.

Study on the Effect of Swirl Flow on Spray Characteristics (스월유동이 분무특성에 미치는 영향에 관한 연구)

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • Journal of ILASS-Korea
    • /
    • v.7 no.1
    • /
    • pp.14-20
    • /
    • 2002
  • It is well known that the flow and spray characteristics is critical factor on the performance and emission of a direct injection diesel engine. So this study aims to investigate the interaction of flow and spray characteristics. At first, in cylinder flow distributions in swirl adaptor for 4-valve cylinder head of DI Diesel engine were investigated under steady conditions for different SCV angles mounted on the cylinder head with steady rig test and 2-D LDV. And the in-cylinder flow was quantified in terms of mean flow coefficient and swirl ratio/tumble ratio. It was found that the swirl ratio is controlled between 2.3 and 3.8. Then spray characteristics of the intermittent injection were investigated. PDA system was utilized for measurement of a droplet size and velocity. The analyses of the PDA results are carried out with Time Dividing Method. It was found that there is a correlation between the swirl flow and SMD. The droplet size and the velocity were nearly constant value with each SCV angle. And the swirl ratio is higher, SMD smaller. The swirl ratio was helpful factor to the atomization of droplet.

  • PDF

A Study on Combustion Process of Biodiesel Fuel with Pilot Injection in a Common-rail Diesel Engine (파일럿분사에 의한 바이오디젤유의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.146-153
    • /
    • 2011
  • American NREL (National Renewable Energy Laboratory) reported that BDF20 could reduce PM, CO, SOx, and cancerogenic matters by 13.6%, 9.3%, 17.6%, and 13% respectively, compared to diesel fuel. BDF20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by applying pilot injection for improving the deterioration of combustibility caused by the higher viscosity of the BDF20 with the combustion flames taken by a high-speed camera and the cylinder pressure diagram. A 4-cycle single-cylinder diesel engine was remodeled to a visible 2-cycle engine taking the flame photographs, which has a common-rail injection system. The test was done laboratory temperature at $5{\sim}6^{\circ}C$. The results obtained are summarized as follows, (1) In the case of without pilot injection, the flame propagation speed was slowed and the maximum combustion pressure became lower. The phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of with pilot injection, early stage of combustion such as rapid ignition timing and flame propagation was activated since intermediate products formed by pilot injection act as a catalyst for combustion of main fuel.