• Title/Summary/Keyword: 3 axis

Search Result 4,790, Processing Time 0.037 seconds

Effect of Annealing on c-axis Orientation of $PbTiO_3$ Thin Films by D.C magnetron Reactive Sputtering (D.C Magnetron Reactive Sputtering 법으로 증착한 $PbTiO_3$ 박막의 열처리에 따른 c-축 배향성의 변화)

  • 이승현;권순용;최한메;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.802-808
    • /
    • 1996
  • PbTiO3 thin films were fabricated onto MgO(100) single crystal substrate by reactive D. C magnetron sput-tering of Pb and Ti metal in an oxygen and argon gas mixture. The annealing of the thin films resulted in the decrease of both the c-axis orientation ratio and the lattice parameter. It is well known that the c-axis lattice parameter of thin film is dependent on the Pb/(Pb+Ti)ratio and the residual stress in the film The PbTiO3 thin films with a Pb/(Pb+T) ratio ranging from 0.45 to 0.57 were fabricated and annealed. The structure of the film the c-axis orientation ratio and the lattice parameter were not dependent on the Pb/(Pb+Ti) ratio before and after annealing. These experimental results proved that the decrease of the c-axis lattice parameter under the annealing conditions was due to the relaxation of the intrinsic stress in the film. This relaxation of the intrinsic stress caused the decrease of the c-axis orientation ratio and this phenomenon can be explained by c-axis growth lattice model.

  • PDF

Analysis of Electromagnetic Phenomena and Vibration of BLDC Motor by Permanent Magnet Overhang (영구자석 오버행에 의한 BLDC Motor의 전자기적 현상 및 진동특성 해석)

  • Kang, Gyu-Hong;Kim, Duck-Hyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.564-571
    • /
    • 2006
  • In this paper, the estimation of Z-axis thrust ripple and vibration of BLDC motor with asymmetrical permanent magnet overhang is performed by 3-D Finite Element Method (3-D FEM) and vibration experimentation. The ripple of Z-axis thrust is due to armature reaction field in BLDC motor driven to squire wave. That is generating to Z-axis vibration. The analysis results of Z-axis thrust and the vibration by Z-axis thrust ripple is validated by comparison with experimental result.

Analysis of Off-axis Integral Floating System Using Concave Mirror

  • Kim, Young Min;Jung, Kwang-Mo;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.270-276
    • /
    • 2012
  • An off-axis integral floating system using a concave mirror is analyzed to resolve the image distortion incurred by the off-axis optical arrangement. The concave mirror can be adopted as the floating device to improve the optical efficiency. The image distortion due to the tilting axis of the concave mirror needs to be analyzed precisely to generate the pre-distortion image. In this paper, we calculate the image deformation in the off-axis structure of the concave mirror using the geometrical optics. Using the calculation results, the compensated elemental image can be generated for the pre-distortion integrated image, which can be projected to the floating 3D image without image distortion. The basic experiments of the off-axis integral floating are presented to prove and verify the proposal.

A study of Frequency Distributions by the Action styles (작업환경에서 오는 시력분포 및 고찰)

  • Kang, Hyang Nyeo;Kim, Sung Tae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • The classifying distribution by the action style was opticion 100, photoartist 100, college student 100 for the simple myopic 35%, for the simple myopic astigmatism 2%, for the compound myopic astigmatism 30.6% for the mixed astigmatism 62.6% for the compound hyperopic astigmatism 37.4% for the ratio of emmetropia 22.4% respectively. The retractive erroreye were -0.50~-2.00Dptr for the simple myopia 14%, -2.00~-6.00Dptr 16%, -6.00Dptr 5%, C-0.25(90.180)~C-2.00DptrAxis(90, 180) 2% for the simple myopicastigmatismS-0.25C-0.25DptrAxis(90, 180)~S-1.00C-1.00DptrAxis (90, 180) 22.6%, S-1.00C-1.00 DptrAxis (90, 180)~S-2.00C-2.00DptrAxis(90, 180) 8% for the compound myopic astigmatism. S+0.25C -0.25DptrAxis(90, 180)~S+2.00C-2.00DptrAxis(90,180) 6.2% for the mixed astigmatism. S+0.25C+0.25DptrAxis(90,180)~S+1.00C+1.00DptrAxis(90,180) 3.4%, S+1.00C+1.00DptrAxis(90,180)~S+2.00C+2.00DptrAxis(90,180) 0.34% for the compound hyperopic astigmatism.

  • PDF

Tool Path Analysis and Motion Control of 3D Engraving Machine

  • Smerpitak, Krit;Pongswatd, Sawai;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1245-1248
    • /
    • 2004
  • This paper presents a new technique to analyze data on the coordinate x, y, z and apply these data to design the motion control to improve the efficiency of the engraving machine so that it can engrave accordingly in 3 dimensions. First, the tool path on the x-y plane is analyzed to be synchronized with the z-axis. The digital data is then sent to the motion control to guide the movement of the engrave point on the x-y plane. Tool path moves along the x-axis with zero degree and different values of the y-axis according to the coordinate of the digital data and the analysis along z-axis to determine the depth for engraving. The depth can be specified from the gray level with the 256 levels of resolution. The data obtained includes the distances on x-axis, y-axis, and z-axis, the acceleration of the engrave point's movement, and the speed of the engrave point's movement. These data is then transfered to the motion control to guide the movement of the engrave point along the z-axis associated with the x-y plane. The results indicate that engraving using this technique is fast and continuous. The specimen obtained looks perfect in 3D view.

  • PDF

A Post-processing Method for 3 Rotary Type 5-axis Machines using Geometric Method (기하학적인 방법을 이용한 3 Rotary 형식 5축 가공기의 후처리 방법)

  • Yun, Jae-Deuk;Jung, Yoong-Ho;Park, Do-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.291-296
    • /
    • 2009
  • This paper presents a post-processing algorithm for 5-axis machines with three rotary axes (3R-2L type). 5-axis machining needs the postprocessor for converting cutter location (CL) data to machine control (NC) data. The existing methods for post-processing use inverse kinematics equations from for-ward kinematics. However in case of 5-axis machines with three rotary axes, the inverse kinematics equations are not induced directly since the forward kinematics equations are non-linear. In order to get the joint values from the forward kinematics equations, previous algorithms use numerical method for the post-processing, which needs searching algorithms with computation time and may result in fail. This paper proposes a geometric method for the post-processing of 3 rotary type 5-axis machines. Our algorithm has three advantages: first, it does not need establishing forward kinematics equations. Second, it is reliable method that eliminates any numerical methods for the inverse kinematics, resulting in the exact solution. Finally, the proposed algorithm can also be applied to 2R-3L type of 5-axis machines.

Generation of 5-axis NC Data for Machining Turbine Blades by Controlling the Heel Angle (Heel angle 조정에 의한 터빈 블레이드의 5축 NC가공 데이터 생성)

  • 이철수;박광렬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.110-120
    • /
    • 1999
  • In general, turbine blades are usually machined on 5-axis NC machine. The 5-axis machining of sculptured surface offers many advantages over 3-axis machining including the faster material-removal rates and an improved surface finish. But it is difficult and time-consuming to generated interference-free 5-axis tool path. This paper describes research on the algorithm for generation of an interference-free 5-axis NC data for machining turbine blades. The approach, using the section profile derived from the intersection of cutting planes with a triangulated-surface approximation, includes (1) CL-data generation by detecting an interference-free heel angle (2) the calculation method for finding a adaptive feed-rate value, and (3) the inverse kinematics depending on the structure of 5-axis machine.

  • PDF

Optimal Tool Positions in 5-axis NC Machining of Sculptured Surface (복합곡면의 5축 NC 가공을 위한 공구자세 최척화)

  • 전차수;차경덕
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.393-402
    • /
    • 2000
  • Recently 5-axis NC machines are widely used in Korea. Since 5-axis machines have two more degrees of freedom than 3-axis machines, it is very important to find desirable tool positions(locations and orientations) in order to make an efficient use of expensive 5-axis NC machines. In this research an algorithm to determine “optimal” tool positions for 5-axis machining of sculptured surfaces is developed. For given CC(Cutter Contact) points, this algorithm determines the cutter axis vectors which minimize cusp heights and satisfy constraints. To solve the optimal problem, we deal with following major issues: (1) an approximation method of a cusp height as a measure of optimality (2) Identifying some properties of the optimal problem (3) a search method for the optimal points using the properties. By using a polyhedral model as a machining surface, this algorithm applies to sculptured surfaces covering: overhanged surface.

  • PDF

Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool (5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘)

  • Yang, Seung-Han;Lee, Chul-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

Five-Axis Machining with Three-Axis CNC Machine (3 축 CNC 를 이용한 5 축 자유곡면 가공)

  • Lee, Jung-Jae;Suh, Suk-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.217-237
    • /
    • 1995
  • One of the most distinguished advantages of five-axis machining is that complex free surfaces(such as impeller) can be machined by one setup. Five-axis CNC machine, however, is very expensive so that its usage is restricted to a few large companies. As an economical approach to five-axis machining, this paper presents a method for machining the five-axis free surfaces(using ball-end mill) on a three-axis CNC machine with an index table. The method developed consists of: a) determining the minimum number of part setups and their interference-free and collision-free potential machining area, b) calculating actual machining area for each setup, and c) generating 3-axis cutter path for each part setup. The method has been successfully tested via computer simulations for several complex surfaces including impeller.

  • PDF