• Title/Summary/Keyword: 3 Plate type mold

Search Result 18, Processing Time 0.031 seconds

Mold Structure using 3plate type mold base for Recycling (재활용 몰드베이스를 이용한 3매 구성 사출금형구조)

  • 정영득;박태원;권윤숙;송준엽;제덕근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.92-96
    • /
    • 1997
  • Recently, the life cycle of products is rapidly shortened and then the disposal of the used mold applied in development of the product is a difficult thing. In this study, we proposed the feasibility of new 3plate type mold base for recycling by analyzing of the existing standard mold base. And in order to apply new 3plate mold base in mold design and making, we constructed the specifications for parts such as runner stripper plate, cavity plate, core plate and slide core unit. Also, we confirmed the possibility of recycling mold base by testing a used 3plate mold for a Audio front pannel.

  • PDF

Injection Mold of Through Plate Type for Recycling (재생 관통형 형판구조의 사출금형 개발)

  • 송준엽;박태원;재덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.123-129
    • /
    • 2003
  • Recently, the life cycle of products is rapidly shortened and then the disposal of the used mold applied in development of the product is a difficult thing. In this study, we proposed the feasibility of new three plate type mold structure for recycling by analyzing of the existing standard mold base. And in order to apply new three plate mold structure in mold design and making. we constructed the specifications for mold parts such as runner stripper plate, cavity plate, core plate and slide core unit. Also, we confirmed the possibility of recycling mold base by testing a used three plate mold for audio front panel.

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.117-121
    • /
    • 2004
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. But, when injection molding is performed using a mold with balanced runner system filling imbalances are occurred between the cavity to cavity. The previous studies by Beaumont at. all reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes of filling imbalance for 3 plate type mold with 8 cavities. And we exhibited a new so called 4BF mold (4 plate type Balanced Filling Mold) to be possible filling balance. We conducted a experimental injection molding to verify the efficiency of the 4BF mold. In the results of the experiment, we could confirmed the balanced filling possibility of the 4BF mold.

Filling Imbalance in 3 Plate Type Injection Molds with Multi-Cavity (다수 캐비티를 갖는 3매 구성형 사출금형에서의 충전 불균형)

  • 제덕근;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.752-755
    • /
    • 2003
  • Injection molding is the one of the most important processes for mass production of plastic parts. Usually Injection molds for mass production are constituted to multi-cavity runner system to manufacture the more parts at a time. To uniformly fill to each cavity, multi-cavity molds are designed to geometrically balanced runner system. However. in practice this is not the case. The previous studies by Beaumount at.[2] reported that filling imbalance occurred by thermal unbalance on the mold and viscosity variation of resins and so on. In this study, we conducted experiments in order to know the causes or filling imbalance for 3 plate type mold with 8 cavities. We presented a new so called 4BF mold(4plate Type Balanced Filling Mold) to improve filling balance. We conducted a experimental injection molding to verify a efficiency of the 4BF mold. In the results of the experiment, We could confirmed the possibility of the 4BF mold.

  • PDF

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn Suk;Je, Deok Keun;Jeong, Yeong Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

Development of a new injection mold structure for internal gears (새로운 내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Youn-Suk;Je, Deok-Keun;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.129-133
    • /
    • 2008
  • As a rotating machine element, plastic gears are more and more widely used in such as industrial machine element, since plastic gear is lighter, higher wear-resistance, and higher vibration absorbing ability than metal gears. When operating plastic parts, tooth breakage and fatigue life shortened due to increasing number of applying load and tooth flank temperature rising, such that accuracy of plastic gears is divided from allowable range to cause vibration and noise. On this study, a internal plastic gears are developed which improved the filling balance molding process by a new injection mold structure. The new mold structure called HR3P(hot runner type 3plate mold). As the result from this studies, we obtained a very accurate roundness internal gears by using design of experiment.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

Development of the injection mold structure for internal gears (내측기어 성형용 사출성형 금형구조의 개발)

  • Kwon, Y.S.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.78-82
    • /
    • 2008
  • Plastic gears are more and more widely used in many industrial machine elements. Plastic gear has higher properties such as light weight, wear resistance, and vibration absorbing ability than metallic gears. But, in case of using an inaccurate plastic gear, its tooth breakage happen and fatigue life is shortened due to increase of applying load and temperature rising on the tooth flank. Inaccuracy of plastic gears such as pitch circle roundness and tooth profile generates vibration and noise. In this study, an internal plastic gears which is molded by a new injection mold structure are developed. The new mold structure is called the HR3P(hot runner type 3plate mold) that has an improved runner system in order to have good filling balance. As a result from this study, an internal gear with very accurate roundness was developed by using design of experiment.

  • PDF

A study on the unfolding length of Z-bending machining using thin plate (박판을 이용한 Z-굽힘 가공의 전개 길이에 관한 연구)

  • Park, Yong-Sun;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2021
  • The bending process of a press die is to bend a flat blank to the required angle. There are V-bending, U-bending, Z-bending, O-bending etc. for bending processing, and the basic principle of calculating the unfolding length of die processing is used as the neutral plane length. Since the constant of the length value of the neutral surface is different depending on the type of bending, it is impossible to accurately calculate it. In particular, Z-bending processing is performed twice, and it is set on the upper and lower surfaces of the blank, and bending processing occurs at the same time as the upward and downward bending, and the elongation of the material occurs and the material increases. It is not possible to check with the calculated value, and it occurs in many cases where the mold is modified after start-up. This study aims to minimize die modification by developing a formula to calculate the development length of Z-bend.

Effects of Mo on the Microstructure and Hardness in High Chromium Cast Irons (Mo가 고크롬주철의 조직 및 경도에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 1996
  • In high chromium cast iron, the control of matrix microstructure as well as carbide structure is important to the performance as a wear resistant material. In this study, 3.0% C-24.0% Cr white cast irons with various molybdenum contents(residual, 1.0%, 3.0% and 5.0%) were solidified conventionally and unidirectionally for studying their effects on the microstructure and hardness. In the conventional casting, two sets of castings were poured from each melt. One set of the castings consisted of cylindrical bars of 10 and 20mm by 155mm long. The second set of the castings was a cylindrical bar of 30mm by 200mm long. On the other hand, a pep-set mold set on the Cu plate was employed to make the solidification unidirectionally. X-ray diffraction method was used to observe retained austenite and carbides in the high chromium cast iron. The morphology of eutectic $M_7C_3$ carbides changed from needle-like type to nodular type with the increase of Mo content. And, the presence of $M_2C$ carbides was identified in the sample where Mo was added over 3.0 %. Primary and eutectic carbides appeared as rod type and corngrain type, respectively in the unidirectionally solidified samples which were cut to parallel to the solidification direction. In the EDX analysis, Cr concentration was higher in the primary and eutectic $M_7C_3$ carbides, Mo in the $M_2C$ carbides, and Fe in the matrix.

  • PDF