• Title/Summary/Keyword: 3 점 굽힘 시험

Search Result 101, Processing Time 0.028 seconds

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

The Effect of Abnormal Intermetallic Compounds Growth at Component on Board Level Mechanical Reliability (컴포넌트에서의 비정상적인 금속간화합물 성장이 보드 레벨 기계적 신뢰성에 미치는 영향)

  • Choi, Jae-Hoon;Ham, Hyon-Jeong;Hwang, Jae-Seon;Kim, Yong-Hyun;Lee, Dong-Chun;Moon, Jeom-Ju
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.47-54
    • /
    • 2008
  • In this paper, we studied how and why did abnormal IMC growth at component affect on board level mechanical reliability. First, interfacial reactions between Sn2.5Ag0.5Cu solder and electrolytic Ni/Au UBM of component side were investigated with reflow times and thermal aging time. Also, to compare mechanical reliability of component level, shear energy was evaluated using the ball shear test conducted with variation of shear tip speed. Finally, to evaluate mechanical reliability of board level, we surface-mounted component fabricated with each condition on PCB side. After conducting of 3 point bending test and impact test, we confirmed solder joint crack mode using cross-sectioning and dye & pry penetration method.

  • PDF

Facture Prediction in SiC Fiber Reinforced $Si_3N_4$ Matrix Composites from Electrical Resistivity Measurements (전기저항측정에 의한 SiC섬유강화 $Si_3N_4$기 복합재료의 파괴예측)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.364-368
    • /
    • 2000
  • SiC fiber reinforced $Si_3N_4$ matrix composites combined with electrical conductive phases of carbon fiber and WC powder fabricated by hot pressing at 1773K. The ability to predict fracture in the ceramic matrix composites was evaluated by measuring simultaneous load-deflection and electrical resistanc difference-deflection curves in four point bending tests. The changes in electrical resistance differences closely corresponded to the fracture behavior of the composites. Different electrical conductive phases are suited to predicting different stages and rates of fracture. These obsevations how that it is possible to perform "in situ" fracture detection in ceramic composites.

  • PDF

Low-velocity Impact Behavior of Aluminum Honeycomb Sandwich Panel (알루미늄 하니컴 샌드위치 판넬의 저속충격거동)

  • 이현석;배성인;함경춘;한경섭;송정일
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.78-82
    • /
    • 2001
  • Impact behaviors of Aluminum Honeycombs Sandwich Panel(AHSP) by drop weight test were investigated. Two types of specimens with 1/2" and 1/4" cell size were tested by two impactors which are weight of $5.25\textrm{kg}_{\textrm{f}}$ and $11.9\textrm{kg}_{\textrm{f}}$. Parametric studies were achieved including the impactor weight and impact sites which consist face, long-edge, short-edge, and point of the specimen. Face one of impact sites was the strongest and short-edge one of impact sites was the weakest. The damaged area of AHSP was enlarged with the increase of impactor weight that is equal to impact energy. After 3 point bending test, fracture modes of AHSP were analyzed with AE counts. Lower facesheet was fractured in the long-edge direction and then separated between facesheet and core. In the short-edge direction after core wrinkled, lower facesheet tear occurred. Impact behavior by FE analysis were increased localized damage in fast velocity because the faster velocity of the impact was, the smaller the stress of core was. Consequently, impactor weight had an effect on widely damaged area, while the impact velocity was caused on the localized damaged area.aged area.

  • PDF

A study on fracture toughness evaluation and crack growth behavior in FRP (SMC material) (FRP(SMC재)의 균열成長 擧動과 破壞인성 평가에 관한 연구)

  • 김정규;박진성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.472-478
    • /
    • 1989
  • Using the SMC(sheet moulding compound) composite material consisting of E-glass chopped strand mat and unsaturated polyester resin, three-point bending tests are carried out to evaluate the elasto-plastic fracture toughness by means of R curve. The crack extension is experimentally observed with the ink staining method. The point of stable crack growth is discussed in consideration of the load-load point displacement curve, the damage behavior of the notch vicinity, and the R-curves. The damage zone of the notch vicinity was composed of the initiation and growth of subcracks as well as those of the main crack. The point of stable crack growth can be defined as the inflection point in the R curves and its point also concurrs with the proportional limit on the load-load point displacement curve.

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

KSTAR 진공용기 시작품 제작관련 기술분석

  • 조승연
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.36-36
    • /
    • 1999
  • 한국중공업(주)에서 수행한 KSTAR 진공용기 시작품 제작이 완성됨에 따라 제작과 관련된 종합기술을 분석하여 보았다. KSTAR 진공용기 시작품(그림1)은 전체의 1/4섹터인 90도 부분으로서 NBI(Neutral Beam Injection) 포트를 포함하는 45도 섹터와 축소포트(Reduced Port)를 포함하는 45도 섹터를 각각 먼저 제작한 후 두 부분을 용접하여 최종 시작품을 완성하였다. 용접은 SMAW법과 GTAW법 등 두가지 방법을 사용하였으며, 초기 용접시는 용접 면적이 작기 때문에 GTAW법을 이용하였고, 마무리 용접과 같이 용접 면적이 넓고 거친 부분에는 SMAW법을 이용하여 용접하였다. 모든 용접이 완전통과 용접이기 때문에 구조적 안전 면에서 좋으나, 진공측면에서는 다소 미흡한 점이 있다. 시작품은 상하 대칭구조로서 원통부분, 원형부분, 원추부분, 너클부분 (그림2) 등으로 나뉘어 지며 이중 원형품은 금형을 이용하여 성형하였고, 나머지 부분은 굽힘가공 후 절단적업을 하였다. 진공용기 조립은 안쪽과 바깥쪽 내벽부터 용접한 후 폴로이달 리브를 용접하고 외벽을 용접한다. 수평포트와 수직포트를 위해 스터브를 용접한 후 미리 용접해둔 NBI 포트 및 축소포트를 부착시켰다. 용접부위의 누설시험을 위한 방법으로, 용접주위 표면에서 개구하고 있는 홈에 적색 침투액을 침투시켜 침투 후 이 액을 홈의 개구로부터 빨아 내어 용접부위 표면상태에서 실제의 홈의 폭보다 확대한 홈의 지시모양으로 나타내게 하여 누설여부를 알기 쉽게 하는 액체 침투 탐상법을 적용하였다. 지시모양의 크기가 5mm 이상인 부분에 대해서는 재용접을 하였다. 누설 시험으로 초음파 탐상시험이 본제품 제작시 수행되어야 한다. 완성된 시작품에 대해 3군데의 위치에서 각각의 부분들이 용접되기 전과 후에 치수를 각각 측정하여 비교하였다. 또한 포트들에 대해서도 용접 전후 치수를 각각 측정하였다. 이러한 측정은 줄자를 사용하여 측정하였으므로 차 후 3차원 정밀 측정이 수반되어야 한다. 이상과 같이 시작품 제작을 통하여 문제점을 파악하고 개선책을 마련함으로서 향 후 KSTASR 진공용기 본 제품 제작할 때 반영코자 한다.

  • PDF

Preparation of Castable Refractories by Recycling of Aluminum Dross (알루미늄드로스를 재활용한 캐스타블내화물 제조)

  • Park Hyungkyu;Lee Hooin;Lee Jinyoung
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • Recycling of aluminum dross is an important issue in the secondary aluminum industries. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing alumina refractories. Sample dross was classified according to its size. The dross smaller than 1 mm was leached with sodium hydroxide solution to extract the remained aluminum from the dross into the solution. and then aluminum hydroxide precipitate was recovered from the leach liquor. The waste residue in the leaching was washed, dried and roasted. Most remained metallic components in the residue was changed into oxide through the processes. The roasted dross was made into alumina castable refractories by mixing with aggregates and a binder. Bending strength of the tested castable specimen was over $25\;kg/\textrm{m}^2$ and compressive strength over $80\;kg/\textrm{cm}^2$, which satisfied the Korean Standard value respectively. From the results, it was suggested that this process could be applicable to recycling of aluminum dross.

Effect of Post-processing on Mechanical Properties of 3D Printed Carbon Chopped Fiber Reinforced Composites (3D 프린팅 된 탄소 단섬유강화 복합재료의 후처리 효과가 재료의 기계적 성능에 미치는 영향)

  • Jia-le, Che;Seung-Hwan, Chang
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.463-468
    • /
    • 2022
  • The high porosity of the infill pattern of carbon chopped fiber-reinforced Nylon composite structures fabricated by the fused filament fabrication (FFF) type 3D printers determines the mechanical performance of the printed structures. This study experimentally evaluated the mechanical performance of Onyx composite specimens fabricated with a rectangular infill structure under the hot-pressing condition to improve the mechanical properties by reducing the porosity of the infill pattern of the printed structure, and evaluated the best mechanical performance. The hot-pressing conditions (145℃, 4 MPa, 12 min) that induce the most appropriate mechanical properties were found. As a result of microscopic observation, it was confirmed that the infill porosity of the composite specimens subjected to post hot-pressing treatment was effectively reduced. In order to confirm the mechanical performance of the post-treated specimen, a tensile test and a three-point bending test were performed with a control specimen without post-treatment and a specimen printed with the same density and dimensions after post-treatment to evaluate the mechanical properties. As a result of comparison, it was confirmed that the mechanical properties were effectively improved when the post-treatment of hot-pressing was performed.

Evaluation of the Fracture Toughness Transition Characteristics of RPV Steels Based on the ASTM Master Curve Method Using Small Specimens (소형시험편의 Master Curve 방법을 이용한 원자로 압력용기강의 파괴인성 천이특성평가)

  • Yang, Won-Jon;Heo, Mu-Yeong;Kim, Ju-Hak;Lee, Bong-Sang;Hong, Jun-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.303-310
    • /
    • 2000
  • Fracture toughness of five different reactor pressure vessel steels was characterized in the transition temperature region by the ASTM E1921-97 standard method using Charpy-sized small specimens. T he predominant fracture mode of the tested steels was transgranular cleavage in the test conditions. A statistical analysis based on the Weibull distribution was applied to the interpretation of the scattered fracture toughness data. The size-dependence of the measured fracture toughness values was also well predicted by means of the Weibull probabilistic analysis. The measured fracture toughness transition curves followed the temperature-dependence of the ASTM master curve within the expected scatter bands. Therefore, the fracture toughness characteristics in the transition region could be described by a single parameter, so-called the reference temperature (T。), for a given steel. The determined reference temperatures of the tested materials could not be correlated with the conventional index temperatures from Charpy impact tests.