• Title/Summary/Keyword: 3차 상관함수

Search Result 87, Processing Time 0.03 seconds

Popping Mechanism and Shape Moulding Factor of Popcorn (튀김옥수수의 파열방향 및 튀김형태 결정요인)

  • Kim, Sun-Lim;Park, Seung-Ue;Kim, E-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.98-102
    • /
    • 1995
  • Popped popcorn generally have a regular popping direction and typical shape. But the reason and mechanism are not clear yet. This experiment was carried out to investigate the shape moulding factor of popped popcorn. Pericarp thickness of tip-cap section of kernels is slightly thicker than that of top section and this fact provides the important information to the reason. Popping starts when the moisture pressure of heated popcorn is increased and reaches at the critical pressure. Therefore, in the same moisture pressure conditions, top sections are bursted first because their pericarp section is thinner than that of tip-cap section. At the very moment tip-cap sections pull down the top sections of peri carp as bi-metal does. So kernels which removed tip-cap section showed the irregular popping shape because they lost the tip-cap pericarp function. How-ever, kernels which removed embryo showed the typical popping shape but their popping volume was small due to emition and shortage of critical moisture pressure. But kernels which removed the whole pericarp and top pericarp were not popped at all because moisture was entirely emitting out of kernels. These results suggest that the shape moulding factor of popped popcorn is the pericarp thickness differences between the top and tip-cap section of kernels.

  • PDF

Characteristics of Membrane Permeability on the Separation of Solid in a Liquid Livestock Manure (축분액비의 고액분리에 있어서 분리막의 투과특성)

  • 황명구;차기철;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A lab-scale MF membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and quality of permeate (liquid livestock manure) in the separation of solid-matters using membrane. Experiment was divided three filtration type such as follows; continuous filtration, gravity filtration, and intermittent filtration. As a result of experiment, flux 1 LMH was maintained for 7days, and trans-membrane pressure(TMP) was increased gradually under 10cmHg, but it was increased immediately after 10cmHg, respectively. However, the flux was increased, the Tmax was decreased exponential more and more. During the pure-flux test, most of the fouling of membrane was reversible. At the gravity filtration, permeate could be obtained as 1.75 LMH for 3.5days without any other electronic pressure. As an investigation of membrane surface, this study could be decided that the reason of fouling at the lower flux (Run 1 and 2) was attached matters in membrane surface, but at the higher flux (Run 4-6) was concentration polarization.

  • PDF

Determination of Equivalent Hydraulic Conductivity of Rock Mass Using Three-Dimensional Discontinuity Network (삼차원 불연속면 연결망을 이용한 암반의 등가수리전도도 결정에 대한 연구)

  • 방상혁;전석원;최종근
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.52-63
    • /
    • 2003
  • Discontinuities such as faults, fractures and joints in rock mass play the dominant role in the mechanical and hydraulic properties of the rock mass. The key factors that influence on the flow of groundwater are hydraulic and geometric characteristics of discontinuities and their connectivity. In this study, a program that analyzes groundwater flow in the 3D discontinuity network was developed on the assumption that the discontinuity characteristics such as density, trace length, orientation and aperture have particular distribution functions. This program generates discontinuities in a three-dimensional space and analyzes their connectivity and groundwater flow. Due to the limited computing capacity In this study, REV was not exactly determined, but it was inferred to be greater than 25$\times$25$\times$25 ㎥. By calculating the extent of aperture that influences on the groundwater flow, it was found that the discontinuities with the aperture smaller than 30% of the mean aperture had little influence on the groundwater flow. In addition, there was little difference in the equivalent hydraulic conductivity for the the two cases when considering and not considering the boundary effect. It was because the groundwater flow was mostly influenced by the discontinuities with large aperture. Among the parameters considered in this study, the length, aperture, and orientation of discontinuities had the greatest influence on the equivalent hydraulic conductivity of rock mass in their order. In case of existence of a fault in rock mass, elements of the equivalent hydraulic conductivity tensor parallel to the fault fairly increased in their magnitude but those perpendicular to the fault were increased in a very small amount at the first stage and then converged.

Evaluation of Basin-Specific CH4 emission flux from Intertidal Flat Sediments of Sogeun-ri, Taean, Mid-west Korea (한국 서해안 태안 소근리 갯벌의 메탄가스 발생량 특성)

  • Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Lee, Dong-Hun;Jang, Seok;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.281-291
    • /
    • 2014
  • In March to August 2013, the emission of gases ($CH_4$, VOC, $CO_2$, $O_2$, and LEL) was measured three times from the intertidal flat sediments at Sogeun-ri, Taean-gun, in the Mid-western seashore of Korea by using chamber method. After analyzing gas emission concentrations inside of flux enclosure chamber by using a GC equipped with Agilent 6890. The gas emission fluxes were calculated from a linear regression of the changes in the concentrations with time. The ranges of gas flux during the experimental period were $+0.06{\sim}+0.60mg/m^2/hr$ for $CH_4$, $+58.45{\sim}+95.58mg/m^2/hr$ for $CO_2$, $-0.02{\sim}-0.20mg/m^2/hr$ for $O_2$, and $-0.60{\sim}+0.65mg/m^2/hr$ for VOC, respectively. The flux measurement results revealed that $CH_4$ fluxes during March in the relatively low sediment temperature ($14.5^{\circ}C$) were significantly higher ($+0.60mg/m^2/hr$) than during June and August ($+0.06{\sim}+0.18mg/m^2/hr$) in high sediment temperature ($32.0{\sim}36.8^{\circ}C$). $CH_4$ flux to mean size of sediments and temperature of inner chamber exhibited strong positive correlation ($R^2=-0.97$ and $R^2=-0.89$, respectively).

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

Growth and Morphological Characteristics of Introduced Sorghum Germplasm (도입 수수 유전자원의 생육 및 형태적 특성)

  • 강정훈;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.207-214
    • /
    • 1996
  • This study was conducted to obtain fundamental information on forage sorghum breeding in forage crop field of Livestock Experiment Station at Suwon from 1986 to 1991. The charcterization of sorghum germplasm was performed through 1986 to 1987, and after parental lines were selected from diverse sorghum germplasm on the basis of flowering date, plant height and several morphological characters for forage sorghum Fl hybrids. The range of variation of 50% flowering date and plant height were greater in order of forage sorghum sudangrass and male sterile line of grain sorghum. The average flowering date was earlier in sudangrass and male sterile line of grain sorghum than forage sorghum lines from the tested sorghum germplasms. And the average plant height was tall in order of forage sorghum, sudangrass and male sterile lines of grain sorghum. There were remarkable morphological variations between sudangrass lines and male sterile lines of grain sorghum such as plant color, leaf midrib color, glume color, seed coat color, head compactness and shape, awns, grain covering and 100 seed weight.

  • PDF

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF