• Title/Summary/Keyword: 3차원 토폴로지

Search Result 25, Processing Time 0.018 seconds

Three Dimensional Topology of Vortical Structure of a Round Jet in Cross Flow (횡단류 제트 와류구조의 3차원 토폴로지)

  • Shin, Dae Sig;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.918-927
    • /
    • 1999
  • In the fully developed internal flow fields, there are complex transition flows caused by interaction of the cross flow and jet when jet is Injected Into the flow. These interactions are studied by means of the flow visualization methods. An instantaneous laser tomographic method is used to reveal the physical mechanism and the structure of vortices formation in the branch pipe flow. The velocity range of cross flow of the pipe is 0.7m/s and the corresponding Reynolds number $R_{cf}$, based on the duct height is $5.6{\times}10^3$, diameter/height ratios(d/H) 0.14 and velocity ratios 3.0. Oil mist with the size of $10{\mu}m$ diameter is used for the scattering particle. The instantaneous topological features of the vortex ring roll-up of the jet shear layer and characteristics of this flow are studied in detail by performing flow visualization in rectangular duct flow. It is found that the formation and roll-up of ring vortices is a periodic phenomenon. The detailed topology of the vortices in the near field of a cross -flow jet and the mechanism associated with them give enforced hints of vortex breakdown within the vortex system due to the interaction of the jet and the cross-flow.

Research on Artificial Intelligence Character based Physics Engine in 3D Game (3 차원 게임에서의 물리엔진에 기반한 인공지능 캐릭터에 관한 연구)

  • Choi, Jong-Hwa;Lee, Byung-Yoon;Lee, Ju-Youn;Shin, Dong-Kyoo;Shin, Dong-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.469-472
    • /
    • 2005
  • 이 논문은 게임물리엔진에서 게임세계의 물리적인 요소를 통하여 게임에 존재하는 캐릭터들에게 인공지능을 부여하기 위한 연구에 관해서 다룬다. 게임속에서의 물리적인 상황을 자동인식하기 위해서 신경망을 이용하였다. 게임속에서의 인공지능의 적용은 게임의 속도저하를 가져오게 되는데 이 논문에서는 그러한 단점을 보완하기 위하여 물리엔진에서 캐릭터의 움직임을 계산하는 수치적분 메서드들에 대한 각 물리상황에 따른 최적의 성능을 분석하여 각각의 물리 상황마다 다른 수치 적분 메서드를 적용하는 내부 구조를 취하였다. 수치적분 메서드에 대한 각각의 성능 분석은 세가지의 물리적 상황을 구분하여 그에 기반하여 실험되었다. 인공지능 캐릭터에 대한 실험은 신경망의 토폴로지에 대한 변화와 학습 횟수에 대한 변화 및 은닉층에 대한 변화로 신경망에서의 최적의 성능에 대한 평가를 실시하였다.

  • PDF

3D Node Deployment and Network Configuration Methods for Improvement of Node Coverage and Network Connectivity (커버리지와 네트워크 연결성 향상을 위한 3차원 공간 노드 배치 및 망 구성 방법)

  • Kim, Yong-Hyun;Kim, Lee-Hyeong;Ahn, Mirim;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.778-786
    • /
    • 2012
  • Sensors that are used on wireless sensor networks can be divided into two types: directional sensors, such as PIR, image, and electromagnetic sensors; and non-directional sensors, such as seismic, acoustic and magnetic sensors. In order to guarantee the line-of-sight of a directional sensor, the installation location of the sensor must be higher than ground level. Among non-directional sensors, seismic sensors should be installed on the ground in order to ensure the maximal performance. As a result, seismic sensors may have network connectivity problems due to communication failure. In this paper, we propose a 3D node deployment method to maximize the coverage and the network connectivity considering the sensor-specific properties. The proposed method is for non-directional sensors to be placed on the ground, while the directional sensor is installed above the ground, using trees or poles, to maximize the coverage. As a result, through the topology that the detection data from non-directional sensors are transmitted to the directional sensor, we can maximize the network connectivity. Simulation results show that our strategy improves sensor coverage and network connectivity.

Edge Property of 2n-square Meshes as a Base Graphs of Pyramid Interconnection Networks (피라미드 상호연결망의 기반 그래프로서의 2n-정방형 메쉬 그래프의 간선 특성)

  • Chang, Jung-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.582-591
    • /
    • 2009
  • The pyramid graph is an interconnection network topology based on regular square mesh and tree structures. In this paper, we adopt a strategy of classification into two disjoint groups of edges in regular square mesh as a base sub-graph constituting of each layer in the pyramid graph. Edge set in the mesh can be divided into two disjoint sub-sets called as NPC(represents candidate edge for neighbor-parent) and SPC(represents candidate edge for shared-parent) whether the parents vertices adjacent to two end vertices of the corresponding edge have a relation of neighbor or shared in the upper layer of pyramid graph. In addition, we also introduce a notion of shrink graph to focus only on the NPC-edges by hiding SPC-edges in the original graph within the shrunk super-vertex on the resulting graph. In this paper, we analyze that the lower and upper bound on the number of NPC-edges in a Hamiltonian cycle constructed on $2^n\times2^n$ mesh is $2^{2n-2}$ and $3*(2^{2n-2}-2^{n-1})$ respectively. By expanding this result into the pyramid graph, we also prove that the maximum number of NPC-edges containable in a Hamiltonian cycle is $4^{n-1}-3*2^{n-1}$-2n+7 in the n-dimensional pyramid.

Spatial Analysis to Capture Person Environment Interactions through Spatio-Temporally Extended Topology (시공간적으로 확장된 토폴로지를 이용한 개인 환경간 상호작용 파악 공간 분석)

  • Lee, Byoung-Jae
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.426-439
    • /
    • 2012
  • The goal of this study is to propose a new method to capture the qualitative person spatial behavior. Beyond tracking or indexing the change of the location of a person, the changes in the relationships between a person and its environment are considered as the main source for the formal model of this study. Specifically, this paper focuses on the movement behavior of a person near the boundary of a region. To capture the behavior of person near the boundary of regions, a new formal approach for integrating an object's scope of influence is described. Such an object, a spatio-temporally extended point (STEP), is considered here by addressing its scope of influence as potential events or interactions area in conjunction with its location. The formalism presented is based on a topological data model and introduces a 12-intersection model to represent the topological relations between a region and the STEP in 2-dimensional space. From the perspective of STEP concept, a prototype analysis results are provided by using GPS tracking data in real world.

  • PDF