• Title/Summary/Keyword: 3차원 컴퓨터 단층촬영

Search Result 75, Processing Time 0.022 seconds

Automatic Dental Arch Detection for CT Images (컴퓨터 단층촬영 영상에서의 치열궁 자동 검출 기법)

  • Kang, Ho-Chul;Kim, Gey-Hyun;Shin, Yeong-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.443-446
    • /
    • 2011
  • 본 연구는 컴퓨터 단층촬영 영상 (CT, Computed Tomography Image)에서 치열궁 (Dental Arch)을 자동으로 검출하는 기법을 제안한다. 제안된 기법에서는 3차원 컴퓨터 단층촬영 영상을 입력 받고 영역 확장법을 이용하여 하악을 분할 한 후 하악의 단면에서 전체적인 치아의 영역을 분할을 한다. 치아의 영역에서 세선화 작업을 거친 후 곡선 정합법을 이용하여 최종 치열궁을 검출한다. 실험 데이터로 두개골 컴퓨터 단층 촬영 데이터를 사용하였다. 본 연구는 치과 영상 데이터로부터 파노라마 영상을 얻는데 이용 될 수 있고 치과 분야의 질병 진단 및 진찰에 이용될 것으로 기대된다.

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

A Measurement Method for Cervical Neural Foraminal Stenosis Ratio using 3-dimensional CT (3차원 컴퓨터단층촬영상을 이용한 신경공 협착률 측정방법)

  • Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.975-980
    • /
    • 2020
  • Cervical neural foraminal stenosis is a very common spinal disease that affects a relatively large number of people of all ages. However, since imaging methods that quantitatively provide neural foraminal stenosis are lacking, this study attempts to present quantitative measurement results by reconstructing 3D computed tomography images. Using a 3D reconstruction software, the surrounding bones were removed, including the spinous process, transverse process, and lamina of the cervical spine so that the neural foramen were well observed. Using Image J, a region of interest including the neural foramen area of the 3D image was set, and the number of pixels of the neural foramen area was measured. The neural foramen area was calculated by multiplying the number of measured pixels by the pixel size. In order to measure the widest area of the neural foramen, it was measured between 40-50 degrees in the opposite direction and 15-20 degrees toward the head. The measured cervical neural foramen area showed consistent measurement values. The largest measured area of the right neural foramen C5-6 was 12.21 ㎟, and after 2 years, the area was measured to be 9.95 ㎟, indicating that 18% stenosis had progressed. Since 3D reconstruction using axial CT scan images, no additional radiation exposure is required, and the area of stenosis can be objectively presented. In addition, it is good to explain to patients with neural stenosis while viewing 3D images, and it is considered a good method to be used in the evaluation of the progression of stenosis and post-operative evaluation.

Digital approach integrating 3D facial scan and a virtual mockup for esthetic restorative treatment: A case report (심미보철 수복을 위한 3차원 안면스캔과 가상 보철물 시각화를 이용한 디지털 치료 증례)

  • Mai, Hai Yen;Choi, Yong-Do;Lee, Du-Hyeong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.425-431
    • /
    • 2019
  • This clinical case report describes the digital workflow that combines a face scan, cone beam computed tomography and an intraoral scan to visualize the outcome of prosthodontic treatment in the anterior region. This approach improves communication between clinic, laboratory and patients. A patient with healthy general condition came for a restorative treatment to treat post-traumatic central incisors of maxilla. A virtual patient replica was made by incorporating a face scan, cone beam computed tomography and an intraoral scan. Design mockup of definitive restorations was shown to the patient and modified according to the patient's desire. This digital workflow facilitates the fabrication of optimal esthetic restorations, and enhances the predictability of outcome of restorations.

Wave-front SRG for Vessel Segmentation (혈관분할을 위한 Wave-front SRG (Seeded Region Growing))

  • 남형인;김동성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.275-278
    • /
    • 2001
  • 영상 분할은 임상에서의 진단과 분석 및 3차원 가시화하는데 있어 선행되어야 할 필수적인 과정이다. 본 논문에서는 심혈관계 영상의 분할을 위한 Wave-front SRG방법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 사용자에 의한 씨앗점(seed front)을 입력으로 받아 그 이웃한 슬라이스들에 wave-front를 만들어 영역 성장법에 의해 3차원 volume을 확장시킨다. 이때 다음으로 성장할 wave-front voxel의 mean gradient 값을 사용하여 밝기값의 변화가 심한 심혈관계 영상을 분할하였으며, Wave-front voxel의 size를 계산하여 혈관분할 시 발생할 수 있는 작은 채널에서의 새나감을 방지하였다. 제안된 방법을 컴퓨터 단층촬영으로 얻은 심혈 관계 영상의 분할에 적용한 결과, 밝기값의 변화가 심한 심혈관계 영상을 성공적으로 분할했으며, 작의 채널의 새나감이 없이 분할을 수행하였다.

  • PDF

An Experience Type Virtual Reality Training System for CT(Computerized Tomography) Operations (컴퓨터 단층 촬영기(CT)의 가상 실습을 위한 3차원 체험형 교육 시스템)

  • Shin, Yong-Min;Kim, Young-Ho;Kim, Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.14D no.5
    • /
    • pp.501-508
    • /
    • 2007
  • Simulation system was introduced and used a lot in the fields of aviation, vessel, and medical treatment. 3D Simulation system has been used quite insufficiently as it requires a lot of system resource and huge amount of computer calculation. As the graphic card performance and simulation function developed, however, PC based simulation has been activated and is verified of its possibility as an educational software. However, educational institutions need to invest huge amount of budget and manpower to purchase and maintain CT Equipment. For such a reason, educational institutions entrust their students to hospitals for indirect experience of operation or for mere observation. This study, therefore, developed a CT Virtual reality education system with which medical CT Equipment can be directly operated in PC based 3D Virtual environment.

A Comparison for Cervical Neural Foraminal Area by 3-dimensional CT in Normal Adults (3차원 컴퓨터단층촬영상을 이용한 정상 성인의 경추 신경공 면적 비교)

  • Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.623-627
    • /
    • 2021
  • Cervical foraminal stenosis is a disease in which the nerves that pass from the spinal canal to the limbs are narrowed and the nerves are compressed or damaged. Due to the lack of an imaging method that provides quantitatively stenosis, this study attempted to evaluate the area of the cervical vertebrae by reconstructing a three-dimensional computed tomography image, and to determine the area of the neural foramen in normal adults to calculate the stenosis rate. Using a three-dimensional image processing program, the surrounding bones including the posterior spinous process, lateral process, and lamellar bones of the cervical vertebra were removed so that the neural foramen could be observed well. A region of interest including the neural foraminal area of the three-dimensional image was set using ImageJ, and the number of pixels in the neural foraminal area was measured. The neural foraminal area was calculated by multiplying the number of measured pixels by the pixel size. To measure the largest neural foraminal area, it was measured between 40~50 degrees in the opposite direction and 15~20 degrees toward the head. The average area of the right C2-3 foramen was 44.32 mm2, C3-4 area was 34.69 mm2, C4-5 area was 36.41 mm2, C5-6 area was 35.22 mm2, C6-7 area was 36.03 mm2. The average area of the left C2-3 foramen was 42.71 mm2, C3-4 area was 32.23 mm2, C5-6 area was 34.56 mm2, and C6-7 area was 31.89 mm2. By creating a reference table based on the neural foramen area of normal adults, the stenosis rate of patients with neural foraminal stenosis could be quantitatively calculated. It is expected that this method can be used as basic data for the diagnosis of cervical vertebral foraminal stenosis.

Manufacturing Technology and Evaluation for X-ray Transmission Performance of CT Cradle composed of Sandwich Composites (샌드위치 복합재로 구성된 CT(Computed Tomography) 장비 Cradle 제작기술 및 X선 투과성능 평가)

  • Lee, Sang-Jin;Kim, Jong-Chul;Kim, Min-Woo;Park, Ja-Yeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.13-17
    • /
    • 2009
  • This paper decided the 3D shape of sandwich composite for the cradle of CT instrument, suggested the stacking sequence with satisfaction on structural criteria using the Finite Element Analysis, and introduced the manufacturing method to meet the X-ray transmission performance uniformly. The design of Cradle was considered the space between other parts, fixing method, and assembly condition with headrest part. It is decided the stacking sequence to meet the criteria that the deflection at the end point is less than 20 mm when it is applied to 135 kg load at the specific locations. In site of manufacturing method, at first, it is used the hand lay-up for carbon UD and carbon fabric/polyester resin, but it had the ununiform X-ray transmission performance due to the void and excess resin. For solving this problem, it was replaced with the infusion method for the first layer of face material and the application of carbon UD or fabric/epoxy resin prepreg for other layers. Therefor, the property of X-ray transmission was improved.