• Title/Summary/Keyword: 3차원 줄해석

Search Result 84, Processing Time 0.025 seconds

Case Study on the Pre-Service Earth Science Teachers' Faults Discrimination on Geological Map using Eye Tracker (시선 추적기를 활용한 지질도에서 예비 지구과학교사들의 단층 판별에 대한 사례 연구)

  • Woong Hyeon Jeon;Duk Ho Chung;Chul Min Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.210-221
    • /
    • 2023
  • The purpose of this study is to evaluate the content knowledge and problem solving process used by pre-service earth science teachers while discriminating faults on geological maps. For this, we collected and evaluated data on fixation duration and gaze plot, while pre-service earth science teachers (N=12) solved the problem on faults interpretation using an eye tracker (Tobii Pro Glass 2 model). The results were as follows. First, most of the pre-service earth science teachers know the concepts of the normal and reverse fault but they do not know the procedural knowledge essential for fault interpretation on geological maps. Second, the pre-service earth science teachers did not draw a geological cross-sectional map to interpret the fault on the geological map and interpreted the fault based on two-dimensional information collected from the geological map rather than three-dimensional information. Therefore, it is essential to improve the teaching and learning environment so that pre-service earth science teachers who will become earth science teachers in the future can learn procedural knowledge essential to comprehend natural phenomena including understanding natural phenomena. The results of this study can substantially help organize a new earth science curriculum or develop materials on teachers' education in the future.

A Study on Automation of Steel Plate Forming by Heating Method (열간가공에 의한 강판의 곡 가공 자동화 시스템)

  • B.I. Lee;H.S. Yoo;G.G. Byun;H.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.34-44
    • /
    • 2002
  • Approximately 70 percent of shop's hull plate consists of three-dimensional curved shell. Concerning with the research on the automation of plate forming many studies have been carried out for the last decade. The purpose of this study is to develop the simulator of heating on the basis of the reasonable mechanical model representing a heating phenomenon. The beating experiment has been carried out with varying parameters influencing on the results of heating information at the kinematics analysis, simulatorestimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variable.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

Numerical modeling of rapidly varied flow using the SST turbulence model and a hybrid free-surface capturing approach (자유수면 포착기법과 난류모형을 이용한 급변류 수치모델링)

  • Kim, Byung Ju;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.149-149
    • /
    • 2020
  • 하천에서 물 흐름이 보와 댐과 같은 수공구조물을 지날 때 일반적으로 흐름상태에 다양하고 급진적인 변화가 발생한다. 특히 흐름이 구조물을 지나면서 사류(supercritical flow)로 변하고 다시 상류(subcritical flow)로 복원되면서 일어나는 도수(hydraulic jump) 현상은 수위의 급변화, 흐름 에너지 소산, 변동성이 강한 압력 분포 등이 특징이다. 이러한 흐름 특성들은 보나 여수로와 같은 수공구조물 자체의 성능뿐만 아니라 이들 수공구조물의 하류에서 발생하는 국부세굴로 인해 구조물의 안정성에 부정적인 영향을 줄 수 있다. 따라서 수공구조물을 설계할 때는 이들 구조물을 통과하는 흐름의 비정상 난류 흐름 특성을 정확하게 해석하여 반영하여야 한다. 이 연구에서는 k-omega SST 난류 모형과 자유수면의 급격한 변동을 해석하기 위한 하이브리드-VOF(hybrid volume of fluid)기법을 이용하여 도수현상을 수치적으로 재현하고자 한다. 기존 CFD(computational fluid Dynamics) 모델링에서는 자유수면 변동의 영향을 고려하기 위해 VOF 기법을 많이 사용하였다. 하지면 전통적인 VOF 기법은 다상흐름(multiphase flow)을 오직 부피분율(volume fraction)의 함수로만 고려하며 모의함으로써 강한 수면변동뿐만 아니라 공기연행(air entrainment)를 동반하는 난류 흐름을 모의하는데는 한계가 있다. 이 연구에서 이용하는 Eulerian 기법인 하이브리드 VOF 기법은 물과 공기의 각 상에 대하여 흐름 특성들을 개별적으로 계산하기 때문에 공기연행을 포함한 급변류 흐름에서 전통적인 VOF 기법보다 적용성이 우수하다. 이와 같은 난류모형과 자유수면 포착기법을 이용하여 3차원 비정상 난류 흐름 수치모형을 구축하여 수공구조물 주변에서 발생하는 강한 공기연행과 난류 특성를 보이는 급변류를 수치적으로 재현한다. 이 연구는 계산된 수치해석 결과를 기존 수리실험 결과와 비교하여 수치모형의 적용성을 평가하고 도수 현상에서 발생하는 독특한 흐름 특성을 제시한다.

  • PDF

The Effects of Arm Function in Sitting With Body Weight Support in Cerebral Palsy : A Preliminary Study (뇌성마비 아동의 앉은 자세에서의 부분적 체중지지가 상지 기능에 미치는 영향: 사전연구)

  • Park, So-Yeon;Lee, Sang-Heon;Kim, Tae-Ho;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.10 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • 이 연구의 목적은 뇌성마비 아동에게 앉은 자세에서 현수를 이용하여 체중지지를 해주었을 때 상지기능에 어떠한 영향을 미치는지 알아보는 것이다. 연구대상자는 뇌성마비 아동 5명과 뇌종양 아동 1명이었다. 연구대상자에게 harness를 착용하여 부분적 체중지지를 하기 전과 착용한 상태에서 손 뻗기 동작을 3차원 동작분석기를 이용하여 어깨관절과 손뻗기 동작에 걸린 시간을 측정하였고, Box and Block 검사를 실시하여 체중지지 전과 착용 시 상지 기능을 비교하였다. 자료분석은 윌콕슨 부호순위검정을 사용하였다. 어깨관절의 관절 가동범위와 Box and Block 검사에서는 유의한 차이가 없었으나, 팔뻗기 동작의 수행 시간에는 유의한 차이가 있었다(p<.05). 연구 대상자의 수가 적고, 대상자 마다 연령 및 손상의 정도가 서로 다르기 때문에 연구결과를 일반화하여 해석하기에는 제한점이 있지만, 앉은 자세에서 harness를 이용하여 부분적 체중지지를 적용하였을 때 상지의 기능 향상에 도움을 줄 수 있으리라 생각하며 향후 다수를 대상으로 한 연구가 필요하리라 생각한다.

  • PDF

Development of Multi-hazard Fragility Surface for Liquefaction of Levee Considering Earthquake Magnitude and Water Level (수위와 지진을 고려한 제방의 액상화에 대한 복합재해 취약도 곡면 작성)

  • Hwang, Ji-Min;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.25-36
    • /
    • 2018
  • Soil liquefaction is one of the types of major seismic damage. Soil liquefaction is a phenomenon that can cause enormous human and economic damages, and it must be examined before designing geotechnical structures. In this study, we proposed a practical method of developing a multi-hazard fragility surface for liquefaction of levee considering earthquake magnitude and water level. Limit state for liquefaction of levee was defined by liquefaction potential index (LPI), which is frequently used to assess the liquefaction susceptibility of soils. In order to consider the uncertainty of soil properties, Monte Carlo Simulation based probabilistic analysis was performed. Based on the analysis results, a 3D fragility surface representing the probability of failure by soil liquefaction as a function of the ground motion and water level has been established. The prepared multi-hazard fragility surface can be used to evaluate the safety of levees against liquefaction and to assess the risk in earthquake and flood prone areas.

Effect of Lateral Deformations of Guideway on Guidance Characteristics of Maglev Train (가이드웨이 횡변형의 자기부상열차 안내특성에의 영향 분석)

  • Kim, Ki-Jung;Lee, Jae-Kyoung;Han, Hyung-Suk;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1161-1167
    • /
    • 2015
  • A slender guideway is essential in improving aesthetically and reducing its construction cost which accounts for about 70% of overall investment for maglev system. As the slender guideway, however, may increase its deformation, its effect on levitation stability and guidance performance needs to be analyzed. The purpose of this study is to analyze the effect on guidance characteristics of maglev due to the lateral deformation of the guideway girder and lateral irregularity of guiderail. For doing this, 3D model considering lateral deformation of girder and irregularity of rail of the guideway is developed. Using the dynamic interaction model integrated with the proposed guideway and maglev vehicle including electromagnetics and its controller, guidance characteristics of maglev are analyzed. It is analyzed that the effect on lateral deformation of girder is relatively small compared to deformation on the lateral irregularities of guiderail.

A Study on the Effects of High Embankment Road on the Microclimatic Environment (고성토 도로의 건설이 미기후 환경에 미치는 영향에 관한 연구)

  • Lim, Ik Hyoun;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.29-37
    • /
    • 2011
  • Recently, Inhabitants nearby the high embankment road have requested a civil complaint on the environmental deteriorations and economic harms. This study was carried out numerical simulation using the 3-D microclimate model 'Envi-met' in order to investigate the variations of a flow field and a temperature field at the road sections with a high embankment and a bridge. About the simulation of flow field, the wind field has changed due to the disturbance of airflow by a high embankment road considerably. And the wind velocity decreased in the whole of simulation space widely. But, the wind velocity and wind direction sited loose to the section of a bridge, relatively. In the results of a temperature field, the slight variations of temperature field were discovered by the disturb of the mixing flow from a high embankment road. These results indicate that the numerical simulation can provide useful information to minimize the disasters, such as traffic accidents and various microclimatic environments in the transportation projects.

  • PDF

Experimental study on vehicle-induced unsteady flow in tunnel (터널에서 차량의 운행에 의해 생성되는 비정상 유동에 대한 실험적 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.411-417
    • /
    • 2009
  • The thermo-flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, piston effect is one of primary causes for formation of air flow in road tunnel and has an effect on initial direction of smoke flow in tunnel fire. In this study to analyze the unsteady flow in the tunnel caused by the run of vehicle, the experimental study of vehicle-induced unsteady flow on a reduced-scale model tunnel is presented. While the three types of vehicle shape such as basic type of rectangular shape, diamond-head type and stair-tail type are changed, the pressure and air velocity variations with time are measured. The rising ratio of pressure and velocity are in order of "basic type of rectangular shape > stair-tail type > diamond-head type". The experimental results would be good data for development of a numerical method on the vehicle-induced unsteady tunnel flow.

Passive Control of the Supersonic Cavity Pressure Oscillations Using Porous Vertical Barrier (수직 다공벽을 이용한 초음속 공동 압력진동의 피동제어)

  • Kang, Min-Sung;Kwon, Joon-Kyeong;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • A computational study has been performed out to evaluate the effect of a vertical porous barrier on the pressure oscillations in a supersonic cavity. The porous barriers with different perforations were vertically installed into a rectangular cavity at Mach numbers 1.50, 1.83 and 2.50. TVD finite difference MUSCL scheme was employed to solve the two-dimensional, unsteady, compressible Navier-Stokes equations. The present vertical porous barrier considerably altered the characteristics of the time-dependent shear layers that occur at the upstream edge of cavity and remarkably reduced the pressure oscillations inside the supersonic cavity. The present results showed that the effectiveness of passive control using the present porous vertical barrier is dependent on Mach number and the perforation of the porous barrier.