• Title/Summary/Keyword: 3차원 점군 데이터

Search Result 58, Processing Time 0.03 seconds

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

3D Scan Model Fitting by Using Statistics (통계를 이용한 3차원 스캔모델 맞춤 방법)

  • Soohyun Jeon;Hyewon Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.219-222
    • /
    • 2008
  • 3차원 인체 스캐너로부터 얻어진 인체형상데이터는 여러 인체에 대한 3차원 평균 모델을 만들어 내는 등의 통계적 분석이나 자세 변경을 위해 필요한 내부 골격 구조와 골격과 피부조직 사이의 관계 등을 계산해 내기 어렵다. 또, 이러한 통계적 분석을 위해서는 각 모델 간의 상응 관계가 확립되어야 하지만 스캐너로부터 얻어진 인체 형상 데이터들은 측정 환경이나 대상에 따라 각각이 서로 상이한 기하학적 구조로 이루어져 있다. 본 논문에서는 템플릿 모델을 3차원 인체데이터에 맞도록 변형함으로써 다수의 인체 형상에 대하여 토폴로지를 일치시키도록 한다. 3차원 인체 데이터에 대해 템플릿 모델이 가장 근사한 형상이 되도록 하는 변형을 자동으로 찾아내기 위해서 표면 위에 정의된 특징점들을 사용한다. 또한, 기존에 찾아둔 특징점군 및 변형정보 데이터가 충분히 많다면 새로운 변형을 계산하는 데 유용하게 사용될 수 있음을 보인다. 이렇게 상응 관계가 확립된 모델들은 삼차원 벡터 공간의 점들의 집합으로 표현 및 통계적 분석이 가능하게 된다.

Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction (실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법)

  • Kim Sehwan;Woo Woontack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.39-52
    • /
    • 2005
  • In this paper, a registration method is presented to register partial 3D point clouds, acquired from a multi-view camera, for 3D reconstruction of an indoor environment. In general, conventional registration methods require a high computational complexity and much time for registration. Moreover, these methods are not robust for 3D point cloud which has comparatively low precision. To overcome these drawbacks, a projection-based registration method is proposed. First, depth images are refined based on temporal property by excluding 3D points with a large variation, and spatial property by filling up holes referring neighboring 3D points. Second, 3D point clouds acquired from two views are projected onto the same image plane, and two-step integer mapping is applied to enable modified KLT (Kanade-Lucas-Tomasi) to find correspondences. Then, fine registration is carried out through minimizing distance errors based on adaptive search range. Finally, we calculate a final color referring colors of corresponding points and reconstruct an indoor environment by applying the above procedure to consecutive scenes. The proposed method not only reduces computational complexity by searching for correspondences on a 2D image plane, but also enables effective registration even for 3D points which have low precision. Furthermore, only a few color and depth images are needed to reconstruct an indoor environment.

Extraction of Key Frames for 3D Reconstruction (3차원 재구성을 위한 키 프레임 추출)

  • Choi, Jongho;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.5-8
    • /
    • 2016
  • 키 프레임 추출 기법은 2차원 비오 영상을 3차원으로 재구성하기 위해 꼭 필요한 프레임을 선택하는 방법이다. 본 논문에서는 비디오에서 빠르게 프레임을 검사하며 최적의 키 프레임을 선택하는 기법을 제안한다. 제안하는 기법은 3차원 재구성을 위한 전처리 과정에 초점을 둔 것으로 프레임 간 대응점 비율 검사를 통해 프레임의 도약 강도를 결정하고 기하 모델 추정이 원활한 프레임을 선택한다. 이로부터 3차원 복원 후처리 과정을 통해 최종적인 3차원 점군(point cloud) 데이터를 획득한다. 실험을 통해 다른 기법과 성능을 비교했을 때, 제안하는 기법이 복원 소요 시간도 적게 들고 보다 밀집된 3차원 데이터를 얻을 수 있었다.

  • PDF

Discontinuity Analysis Method using Reverse Engineering (역분석공학기법을 이용한 불연속면 분석 프로그램 개발)

  • Park, Eui-Seob;Jung, Yong-Bok;Ryu, Chang-Ha;SunWoo, Choon;Choi, Yong-Kun;Heo, Sung;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.165-174
    • /
    • 2007
  • The technique, which reproduces the figures of objects from measured data of the objects using 3-D laser scanner, is called reverse engineering. Recently, research studies into applications of reverse engineering to rock engineering are increasing in number, in the discontinuity surveys for rock slopes out of man's reach, or rapid discontinuity surveys for wide range areas. For analysis of discontinuity using reverse engineering, a program for processing point clouds data from the 3-D laser scanner, for sampling from these point clouds data, and finally analyzing the discontinuity is needed. However, existing programs rarely have sufficient functions to properly analyze the discontinuities. In this study, a program was developed, which can automatically sample discontinuities from the point clouds data which measured in a rock slope using a 3-D laser scanner, and which can also undertake statistical analysis of the discontinuities. This developed program was verified by the application of discontinuity surveys in a rock slope and a tunnel. By undertaking the discontinuity survey using a 3-D laser scanner and the developed program, the feasibility and rapidity of such surveys is expected to improve in areas out of man's reach in geotechnical surveys. Taking into consideration the fact that the international level of related techniques is at a rudimentary stage, the possibility of prior occupation of a broad market is also expected.

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation (재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발)

  • Kim, Seongsam;Nho, Hyunju;Shin, Dongyoon;Lee, Junwoo;Kim, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1195-1207
    • /
    • 2020
  • With the development of GeoWeb technology, 2D/3D spatial information services through the web are also has been used increasingly in the application of disaster management. This paper is suggested to construct a web-based 3D geo-spatial information mapping platform to visualize various spatial information collected at the disaster site in a web environment. This paper is presented a web-based geo-spatial information mapping service plan for the various types of 2D/3D spatial data and large-volume LiDAR point cloud data collected at the disaster accident site using HTML5/WebGL, web development standard technology and open source. Firstly, the collected disaster site survey 2D data is constructed as a spatial DB using GeoServer's WMS service and PostGIS provided an open source and rendered in a web environment. Secondly, in order to efficiently render large-capacity 3D point cloud data in a web environment, a Potree algorithm is applied to simplifies point cloud data into 2D tiles using a multi-resolution octree structure. Lastly, OpenLayers3 based 3D web mapping pilot system is developed for web visualization of 2D/3D spatial information by implementing basic and application functions for controlling and measuring 3D maps with Graphic User Interface (GUI). For the further research, it is expected that various 2D survey data and various spatial image information of a disaster site can be used for scientific investigation and analysis of disaster accidents by overlaying and visualizing them on a built web-based 3D geo-spatial information system.

6D ICP Based on Adaptive Sampling of Color Distribution (색상분포에 기반한 적응형 샘플링 및 6차원 ICP)

  • Kim, Eung-Su;Choi, Sung-In;Park, Soon-Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.401-410
    • /
    • 2016
  • 3D registration is a computer vision technique of aligning multi-view range images with respect to a reference coordinate system. Various 3D registration algorithms have been introduced in the past few decades. Iterative Closest Point (ICP) is one of the widely used 3D registration algorithms, where various modifications are available nowadays. In the ICP-based algorithms, the closest points are considered as the corresponding points. However, this assumption fails to find matching points accurately when the initial pose between point clouds is not sufficiently close. In this paper, we propose a new method to solve this problem using the 6D distance (3D color space and 3D Euclidean distances). Moreover, a color segmentation-based adaptive sampling technique is used to reduce the computational time and improve the registration accuracy. Several experiments are performed to evaluate the proposed method. Experimental results show that the proposed method yields better performance compared to the conventional methods.