• Title/Summary/Keyword: 3차원 전기비저항 탐사

Search Result 108, Processing Time 0.033 seconds

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.

Electrical Resistivity Survey at the Ground with Micro-subsidence by Excessive Pumping of Groundwater (지하수 과잉양수에 따른 미세 지반변형 지역에서의 전기비저항 탐사)

  • Song Sung-Ho;Lee Kyu-Sang;Yong Hwan-Ho;Kim Jin-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 2004
  • Because the minute displacement of ground accompanied by excessive pumping of groundwater at specified site is mainly generated from ill-balancing of water budget within groundwater basin, It is necessary to monitor the variation of micro-subsidence for a long time at representative points. We made up the conceptual model using two-dimensional electrical resistivity survey and three-dimensional soil profile consisted of loam and sand. In verifying the reliability of this conceptual model using numerical modeling for ground settlement and groundwater flowing, two-dimensional electrical resistivity survey with short distance of electrode following soil sampling with hand auger would be useful for interpreting hydrogeological structure related to the minute displacement of ground consisted of loam and sand.

Imaging of Fractures and Tunnel by 3-D ERT (전기비저항 토모그래피에 의한 파쇄대 및 터널의 3차원 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2008
  • ERT imaging, especially 3-D method, is a very powerful means to obtain a very high resolution image of the subsurface for geotechnical or hydrogeological problems. In this paper, we introduce two examples of successful case histories, where the imaging targets were three-dimensional. First example is the case of 3-D fracture imaging for hydrogeologic application. In this example, the borehole deviation was a critical problem in the ERT imaging and we could obtain real 3-D attitude of fracture system by including the borehole deviation in the inversion. In the second case, we did field experiment to image the empty tunnel with the size of $2m{\times}2m$ and the target was very clearly imaged in 3-D space. In these examples, we could show that 3-D ERT imaging is a very powerful tool for the 3-D subsurface imaging and the method can provide enhanced imaging capabilities especially for the 3-D targets such as fractures and cavities or tunnel.

Three Dimensional Induced Polarization Modeling (3차원 IP 탐사의 모형 응답 계산)

  • Nam Myung-Jin;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The application of geophysical survey methods need to be integrated to meet the increasing demands of imaging of the subsurface in the practical application of civil engineering, underground water survey and environmental problems. This paper examines the IP survey which can be surveyed simultaneously with DC resistivity survey. In this study, 3-D IP modeling algorithm was developed. The 3-D IP modeling algorithm was based on 3-D resistivity modeling by finite-element method. The result of 3-D modeling was compared with 2-dimensional modeling result. The result showed that the 3-D modeling algorithm developed in this study was accurate. Finally, the 3-D modeling algorithm developed in this paper will be useful for the study of IP data.

  • PDF

Detection of Sea-water Intrusion Caused by Tidal Action Using DC Resistivity Monitoring (전기비저항 모니터링을 이용한 해수침투 파악)

  • Hwang, Hak-Soo;Lee, Sang-Kyu;Ko, Dong-Chan;Kim, Yang-Soo;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The 1 $km^2$ area studied is located in Sukchun-ri, Hwasung-koon, the southern part of Kyeonggi-do. Even though this site has been known as a contaminated area caused by seawater intrusions, geophysical and geochemical surveys have never been carried out at the site to determine the extent of the seawater contamination and to investigate whether the seawater intrusion is in progress. The purpose of this study is to determine the extent of seawater contamination and a preferred channel of the seawater intrusion using geophysical methods such as DC resistivity surveys with Schlumberger array and a dipole-dipole array. In order to determine whether the seawater intrusion is in progress in the area, DC resistivity monitoring with Schlumberger array was performed. According to the resistivity map obtained from the inversion of the resistivity data measured with Schlumberger array, the study area is divided into two districts as relatively lowly resistive (less than 30 ohm-m) and highly resistive (more than 30 ohm-m) areas. The distribution of the lowly resistive area is consistent with the distribution of the layer composed of clay minerals, and the resistivity of this layer decreases slowly as approaching to the old seashore. Hydrogeological analysis shows that the clay layer within a distance of about 200 m from the seashore has been already contaminated by sea-water and its electric conductivity is 8 times higher than that of the sand layer covered by the clay layer. According to the results of the 2-dimensional DC resistivity surveys with a dipole-dipole array, there are two preferred channels of the seawater intrusion in the site, and both the channels are in the NW-SE direction from the old seashore. The lowly resistive zone in the southern channel extends to a depth of 80 m. The DC resistivity monitoring with Schlumberger array was carried out along the preferred channel which has the low resistivity Bone (fracture zone) that extended to a depth of 80 m. The time series of apparent resistivity, measured at a distance of 260 m from the old coast line, fluctuates with a period of 12 hours. From these observations, it can be concluded that the seawater intrusion caused by tidal action is still in progress along the fractured zone interpreted by the DC resistivity surveys with a dipole-dipole array.

  • PDF

Electrical Resistivity Methods in Korea (한국의 전기비저항탐사)

  • Kim, Hee-Joon
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.473-483
    • /
    • 2006
  • Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.

Three-dimensional Resistivity Inversion Including Topographic Effect (지형효과를 포함한 3차원 전기비저항 역산)

  • 박종오;김희준;송무영
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Three-dimensional (3-D) resistivity inversion including a topographic effect can be considered theoretically to be the technique of acquiring the most accurate image in the interpretation of resistivity data, because it includes characteristic image that the actual subsurface structure is 3-D. In this study, a finite-element method was used as the numerical method in modeling, and the efficiency of Jacobian calculation has been maximized with sensitivity analysis for the destination block in inversion process. Also, during the iterative inversion, the resolution of inversion can be improved with the method of selecting the optimal value of Lagrange multiplier yielding minimum RMS(root mean square) error in the parabolic equation. In this paper, we present synthetic examples to compare the difference between the case which has the toprographic effect and the other case which has not the effect in the inversion process.

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint (강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.139-149
    • /
    • 2018
  • The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

Characterization of an Animal Carcass Disposal Site using Electrical Resistivity Survey (전기비저항 탐사를 이용한 가축사체 매몰지 특성 분석)

  • Ko, Jin-Suk;Kim, Bong-Ju;Choi, Nag-Choul;Kim, Song-Bae;Park, Jeong-Ann;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • In this study, an electrical resistivity survey and a drilling investigation were conducted at an animal carcass disposal site. Chemical analysis of leachate collected from the site was also performed (sampling times: May 2011 and June 2012). Five lines of dipole-dipole electrical resistivity surveys were carried out, along with drilling investigations at 3 points within the disposal areas and 11 points near the disposal site. Two-dimensional inverse modeling of the collected resistivity data was performed to evaluate the properties (size, depth, and form) of the disposal site. Leachate analysis showed that pH of leachate decreased from 7.4 to 6.7, while Eh changed from -358 mV to -48 mV over time. In addition, dissolved ions increased due to the progression of carcass decomposition. Results of the electrical resistivity survey indicated that low resistivity zones (minimum value, $0.64{\Omega}m$) existed at a depth of 8 m from the surface. Considering the bedrock location and carcass disposal depth, there was no evidence of bedrock contamination by leachate. The results of the electrical resistivity survey are consistent with those of the drilling investigation, which indicates that electrical resistivity effectively depicted the properties of the disposal site. This study demonstrates that electrical resistivity survey is a suitable technique for investigation of animal carcass disposal sites.

A Study on the Modified Electrode Arrays in Two-Dimensional Resistivity Survey (2차원 전기비저항 탐사를 위한 변형된 전극배열법에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.59-69
    • /
    • 2001
  • Five kinds of modified electrode arrays were proposed to overcome the weak points of the commonly used arrays using dipole and/or pole in two-dimensional resistivity surveys. The modified pole-pole array was suggested to overcome the inefficiency caused by distant earthing in pole-pole array. Four kinds of modified arrays using dipole were designed to enhance the signal-to-noise ratio of the conventional dipole-dipole and pole-dipole arrays through boosting up the measured potential difference. In the numerical experiments using the two-dimensional modeling and inversion, the effects of the ambient electrical noise and the resolving power were examined and the results showed the validity of the modified arrays proposed in this study.

  • PDF