• Title/Summary/Keyword: 3차원 전기비저항탐사

Search Result 108, Processing Time 0.026 seconds

Behavior of Normalized Voltage Curves in the Resistivity Method (전기비저항 탐사에서 전위감쇠곡선의 거동특성)

  • Cho, In-Ky;Lee, Keun-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.364-369
    • /
    • 2010
  • Resistivity data should be edited before the inversion because resistivity data are contaminated by a lot of noise. Generally, outlier or data violating pants-leg effect in dipole-dipole array were used to be rejected in the apparent resistivity pseudo-section. For more precise data editing, normalized voltage curves are used. In this study, we analyzed the behavior of normalized voltage curves for pole-pole, pole-dipole and dipole-dipole arrays in the presence of threedimensional inhomogeneities, and finally re-examined the validity of normalized voltage curves in the editing process of resistivity data.

Two- and three-dimensional analysis of MT data acquired in Victoria, Australia (호주 Victoria주 MT 탐사 자료의 2차원 및 3차원 해석)

  • Lee, Seong-Kon;Lee, Tae-Jong;Uchida, Toshihiro;Park, In-Hwa;Song, Yoon-Ho;Cull, Jim
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.71-74
    • /
    • 2009
  • 호주 Victoria주에서 2007년에 이어 2008년에 Victoria주 북부 지역에서 추가로 탐사 자료를 획득하였으며, 이에 대한 2차원 및 3차원 해석을 수행하였다. 새로이 얻은 자료는 이전의 측선과 나란하게 설정하여 이전 결과에서 해석하였던 전기비저항 영상의 연장성을 밝히고자 하였다. 2차원 및 3차원 역산 결과를 이 지역의 지질자료와 비료 해석한 결과 2007년 MT자료 해석으로부터 확인된 고비저항 및 저비저항대의 공통적인 특징을 새로운 측선에서도 확인할 수 있었으며, 또한 이 지역의 대규모 단층대로 영상화할 수 있었다.

  • PDF

Structural-Health Evaluation for Core Zones of Fill Dams in Korea using Electrical Resistivity Survey and No Water Boring Method (전기비저항 탐사와 무수보링을 이용한 국내 필 댐 코어존의 건전성 평가)

  • Lee, Sangjong;Lim, Heuidae;Park, Dongsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.21-35
    • /
    • 2015
  • Electrical resistivity survey (2D and 3D) were employed for detection of possible weak zone of core zones of three central core earth-rockfill dams in Korea. In the 2D results, the core zones is lower resistivity zone with less than $50{\sim}400ohm{\cdot}m$, and the basement is relatively higher resistivity zone with over $1,000ohm{\cdot}m$. In the 3D results, especially, the weak zone with under $100ohm{\cdot}m$ was detected spatial distribution area in the dam. We also drilled boreholes to collect soil samples of core zones of each dam. Water was not used during boring, because water for rotary wash boring could cause structural damages in earth dams. We found that the soil samples of core zones from all of the boreholes correspond to CL (USCS), but we also found that the fluidized or water-saturated soil samples were found in lower resistivity zones. Therefore, the electrical resistivity survey and drilling method without water are a quick and efficient method for structural-health evaluation which is detection of possible weak zones in earth core rockfill dams.

RMR Evaluation by Integration of Geophysical and Borehole Data using Non-linear Indicator Transform and 3D Kriging (암반등급 해석을 위한 비선형 지시자 변환과 3차원 크리깅 기술의 물리탐사 및 시추자료에 대한 적용)

  • Oh, Seo-Khoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.429-435
    • /
    • 2005
  • 3D RMR (Rock Mass Rating) analysis has been performed by applying the Geostatistical integration technique for geophysical and borehole data. Of the various geostatistical techniques for the integrated data analysis, in this study, we applied the SKlvm (Simple Kriging with local varying means) method that substitutes the values of the interpreted geophysical result with the mean values of the RMR at the location to be inferred. The substitution is performed by the indicator transform between the result of geophysical interpretation and the observed RMR values at borehole sites. The used geophysical data are the electrical resistivity and MT result, and 10 borehole sites are investigated to obtain the RMR values. This integrated analysis makes the interpretation to be more practical for identifying the realistic RMR distribution that supports the regional geological situation.

Electrical Resistivity Response Due to the Variation of Embankment Shape and Reservoir Level (제체형태와 수위에 따른 전기비저항 반응 연구)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • The distortion effect of electrical response for two-dimensional (2-D) DC resistivity method was verified in terms of 2-D inversion result of synthetic data obtained by three-dimensional (3-D) modeling, which is frequently applied to assess the safety of center core-type fill dam structure. The distortion effect is due to 2-D interpretation for 3-D structure. By the modeling analysis, we found that the water level is correctly described in the resistivity section around the middle part rather than each end side of the embankment due to the 3-D terrain effect, when the material of the embankment is assumed as horizontally uniform. And when we set the slope of outer rock fill part as uniform. the sharper the slope of the center core is, the more similar the resistivity section reflects. On the other hand, when the slope of the rock fill is steep, the resistivity section shows the water level at lower position than the real one, and the 3-D distortion effect at the end side of the embankment was enhanced.

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

Dipole-Dipole Array Geoelectric Survey for Gracture Zone Detection (전기비저항 탐사법을 이용한 지하 천부 파쇄대 조사)

  • Kim, Geon Yeong;Lee, Jeong Mo;Jang, Tae U
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.217-224
    • /
    • 1999
  • Although faults can be found by geological surveys, the surface traces of faults are not easily discovered by traditional geological surveys due to alluvia. In and around faults and fracture zones, the electrical resistivity appears to be lower than that of the surroundings due to the content of groundwater and clay minerals. Therefore, electrical resistivity surveys are effective to search buried faults and fracture zones. The dipole-dipole array electrical resistivity surveys, which could show the two dimensional subsurface electrical resistivity structure, were carried out in two areas, Yongdang-ri, Woongsang-eup, Yangsan-si, Kyungsangnam-do and Malbang-ri, Woedong-eup, Kyungju-si, Kyungsangpook-do. The one was next to the Dongrae Fault and the other near the Ulsan Fault was close to the region in which debatable quaternary fault traces had been found recently. From each measured data set, the electrical resistivity cross-section was obtained using the inversion program the reliability of which was analyzed using analytic solutions. A low resistivity zone was found in the inverted cross-section from the Yongdang-ri area survey data, and two low resistivity zones were found in that from the Malbang-ri area survey data. They were almost vertical and were 15∼20 m wide. Accounting the shape and the very low resistivity values of those zones (<100 Ωm)in the inverted section, they were interpreted as fracture zones although they should be proven by trenching. The reliability of the interpretation might be improved by adding some more parallel resistivity survey lines and interpreting the results in 3 and/or adding other geophysical survey.

  • PDF

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.