• Title/Summary/Keyword: 3차원 영상 보정

Search Result 267, Processing Time 0.022 seconds

A Study on 3D Stereoscopic Correction Methods Based on 3D Computer Graphics (그래픽스 기반의 3차원 입체영상제작 보정에 관한 연구)

  • Lee, Jun-Sang;Lee, Imgeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.353-354
    • /
    • 2012
  • 최근 입체영상구현 기술연구는 현실감 있는 영상을 제작하기 위해서 다양하고 새로운 영상 제작방법들이 시도되고 있다. 하지만 입체영상 재현의 기술적 문제에 집중되어 있고 3D 그래픽스를 기반으로 한 입체영상 제작 기술에 관한 연구는 부족한 실정이다. 또한 그래픽스 환경에서 입체영상콘텐츠에 대한 입체감을 극대화 할 수 있는 기법이 필수적이다. 따라서 본 연구는 3차원 입체영상을 제작하는 과정에서 그래픽스 환경에서 실재감 있는 영상을 제작하기 위한 다양한 입체제작 원리와 제작을 활용한 영상보정 기법을 사용하여 키스톤 왜곡에 대한 현상을 보정하고 구현 가능한 제작방법을 제시하였다.

  • PDF

implementation of 3D Reconstruction using Multiple Kinect Cameras (다수의 Kinect 카메라를 이용한 3차원 객체 복원 구현)

  • Shin, Dong Won;Ho, Yo Sung
    • Smart Media Journal
    • /
    • v.3 no.4
    • /
    • pp.22-27
    • /
    • 2014
  • Three-dimensional image reconstruction allows us to represent real objects in the virtual space and observe the objects at arbitrary view points. This technique can be used in various application areas such as education, culture, and art. In this paper, we propose an implementation method of the high-quality three-dimensional object using multiple Kinect cameras released from Microsoft. First, We acquire color and depth images from triple Kinect cameras; Kinect cameras are placed in front of the object as a convergence form. Because original depth image includes some areas where have no depth values, we employ joint bilateral filter to refine these areas. In addition to the depth image problem, there is an color mismatch problem in color images of multiview system. In order to solve it, we exploit an color correction method using three-dimensional geometry. Through the experimental results, we found that three-dimensional object which is used the proposed method is more naturally represented than the original three-dimensional object in terms of the color and shape.

Calibration of Active Binocular Vision Systems (능동 양안시 장치의 보정)

  • 도용태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.432-435
    • /
    • 2000
  • 로봇의 지능적 작업을 위해서는 3차원 공간에 대한 감각기능이 필수적이며, 이러한 목적으로 시각장치가 사용되었을 경우 보정은 여타 절차에 선행하게 된다. 실제 보정 과정중 중요한 것은 제어점들과 그들의 영상점을 획득하는 일과 이를 이용한 광학적, 기하학적 카메라의 파라메터 결정에 있다. 본 논문에서는 빔프로젝터와 컴퓨터에 의해 제어되는 양안시 장치를 활용하여 많은 수의 3차원 제어점들과 이들의 영상좌표값들을 간편하게 획득하는 방법을 서술한다. 또, 위치가 고정된 카메라의 경우와 달리 능동 카메라 장치는 그 파라메터의 일부가 변수가 되는데, 이 경우에 유용한 선형의 보정 기법을 제안한다.

  • PDF

3D Motion of Objects in an Image Using Vanishing Points (소실점을 이용한 2차원 영상의 물체 변환)

  • 김대원;이동훈;정순기
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.621-628
    • /
    • 2003
  • This paper addresses a method of enabling objects in an image to have apparent 3D motion. Many researchers have solved this issue by reconstructing 3D model from several images using image-based modeling techniques, or building a cube-modeled scene from camera calibration using vanishing points. This paper, however, presents the possibility of image-based motion without exact 3D information of scene geometry and camera calibration. The proposed system considers the image plane as a projective plane with respect to a view point and models a 2D frame of a projected 3D object using only lines and points. And a modeled frame refers to its vanishing points as local coordinates when it is transformed.

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

3D Motion Of Objects In A Spherical Image-based Virtual Environment Using Vanishing Points (소실점을 이용한 구형 영상기반 가상환경 내 물체의 3차원 운동)

  • 김치환;김대원;정순기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.487-489
    • /
    • 2001
  • 본 논문은 구형 영상기반 가상환경에서 하나의 시점 영상 내에 포함되어 있는 임의의 물체를 모델링하여 3차원 운동이 가능한 시스템을 소개한다. 본 논문에서는 카메라 보정을 하지 않고, 물체에 대한 최소한의 기하학적 정보만을 이용하여 물체를 모델링하고, 모델링된 물체의 영상 기반 운동(image-based motion)의 가능성을 제시한다. 구현된 시스템은 구 환경에서의 하나의 시점 영상을 사영평면으로 간주하고 사용자에 의해 입력된 선과 점으로 투영된 3차원 물체의 2차원 모양을 모델링한다. 그리고 소실점을 이용해서 모델링된 입방체의 3차원 운동을 다룬다.

  • PDF

A New Illumination Compensation Method based on Color Optimization Function for Generating 3D Volumetric Model (3차원 체적 모델의 생성을 위한 색상 최적화 함수 기반의 조명 보상 기법)

  • Park, Byung-Seo;Kim, Kyung-Jin;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.598-608
    • /
    • 2020
  • In this paper, we propose a color correction technique for images acquired through a multi-view camera system for acquiring a 3D model. It is assumed that the 3D volume is captured indoors, and the position and intensity of the light is constant over time. 8 multi-view cameras are used, and converging toward the center of the space, so even if the lighting is constant, the intensity and angle of light entering each camera may be different. Therefore, a color optimization function is applied to a color correction chart taken from all cameras, and a color conversion matrix defining a relationship between the obtained 8 images is calculated. Using this, the images of all cameras are corrected based on the standard color correction chart. This paper proposed a color correction method to minimize the color difference between cameras when acquiring an image using 8 cameras of 3D objects, and experimentally proved that the color difference between images is reduced when it is restored to a 3D image.

Imaging of Ground Penetrating Radar Data Using 3-D Kirchhoff Migration (3차원 Kirchhoff 구조보정을 이용한 지표레이다자료의 영상화)

  • Cho, Dong-Ki;Suh, Jung-Hee;Choi, Yoon-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.185-192
    • /
    • 2002
  • We made a study of 3-D migration which could precisely image data of GPR (Ground Penetrating Radar) applied to NDT (Non-Destructive Test) field for the inspection of structural safety. In this study, we obtained 3-D migrated images of important targets in structuresurvey (e.g. steel pipes, cracks) by using 3-D Kirchhoff prestack depth migration scheme developed for seismic data processing. For a concrete model consisting of steel pipe and void, the targets have been well defined with opposite amplitude according to the parameters of the targets. And migrated images using Parallel-Broadside array (XX configuration) have shown higher resolution than those using Perpendicular-Broadside array (YY configuration) when steel pipes had different sizes. Therefore, it is required to analyze the migrated image of XX configuration as well as that of general YY configuration in order to get more accurate information. As the last stage, we chose a model including two steel pipes which cross each other. The upper pipe has been resolved clearly but the lower has been imaged bigger than the model size due to the high conductivity of the upper steel.

Performance Measurements of Positron Emission Tomography: An Investigation Using General Electric $Advance^{TM}$ (양전자방출단층촬영기의 표준 성능평가 방법: GE $Advance^{TM}$에 적용한 예)

  • Lee, J.R.;Choi, Y.;Choe, Y.S.;Lee, K.H.;Kim, S.E.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.548-559
    • /
    • 1996
  • A series of performance measurements of positron emission tomography (PET) were performed following the recommendations of the Computer and Instrumentation Council of the Society of Nuclear Medicine and the National Electrical Manufacturers Association. We investigated the performance of the General Electric $Advance^{TM}$ PET. The measurements include the basic intrinsic tests of spatial resolution, scatter fraction, sensitivity, and count rate losses and randoms. They also include the tests of the accuracy of corrections: count rate linearity correction, uniformity correction, scatter correction and attenuation correction. GE $Advance^{TM}$ PET has bismuth germanate oxide crystals (4.0mm transaxial ${\times}$ 8.1mm axial ${\times}$ 30.0mm radial) in 18 rings, which form 35 imaging planes spaced by 4.25mm. The system has retractable tungsten septa 1mm thick and 12cm long. Transaxial resolution was 4.92mm FWHM in 2D and 5.14mm FWHM in 3D at the center. Average axial resolution in 2D decreased from 3.91mm FWHM at the center to 6.49mm FWHM at R=20cm. Average scatter fraction of direct and cross slices was 9.57%. Dead-time losses of 50% corresponded to a radioactivity concentration of $4.86{\mu}Ci/cc$ and a true count rate of 519 kcps in 2D. The accuracy of count rate linearity correction was 1.84% at the activity of $4.50{\mu}Ci/cc$. Non-uniformity was 2.06% in 2D and 2.93% in 3D. Remnant errors after scatter correction were 0.55% in 2D and 4.12% in 3D. The errors of attenuation correction were 6.21% (air), 0.20% (water), -6.32% (teflon) in 2D and 5.00% (air), 6.94% (water), 3.01% (teflon) in 3D. The results indicate the performance of GE $Advance^{TM}$ PET scanner to be well suited for clinical and research applications.

  • PDF

The Geometric Correction of IKONOS Image Using Rational Polynomial Coefficients and GCPs (RPC와 GCP를 이용한 IKONOS 위성영상의 기하보정)

  • 강준묵;이용욱;박준규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • IKONOS satellite images are particularly well suited for stereo feature extraction. But, because IKONOS doesn't offer information about the satellite ephemeris and attitude, we have to use IKONOS RPC(Rational Polynomial Coefficients) data for 3-D feature extraction. In this study, it was intended to increase the accuracy and the efficiency in application of high resolution satellite images. Therefore, this study develop the program to extract 3-D feature information and have analyzed the geometric accuracy of the IKONOS satellite images by means of the change with the number, distribution and height of GCPs. This study will provide basic information for luther studies of the accuracy correction in IKONOS and high resolution satellite images.