2차원 영상을 3차원 모델 영상으로 변환하는 방식이 다양하게 발전해오고 있다. 딥러닝의 발전 중 특히 GAN의 다양한 연구는 2차원 영상의 생성뿐만 아니라 다양한 3차원 영상의 생성에도 진전을 보였다. 본 고에서는 2차원 영상을 3차원 영상으로 변환하는 연구의 필요성을 바탕으로 관련 연구의 내용과 동향을 분석하였다. 주요 내용으로는 딥러닝 기반의 3차원 객체인식, 2D로부터 3D 변환을 위한 신경망에 대한 연구, 생성적 기법을 적용한 연구, 3D 모델링 도구 등이 포함된다. 관련 연구의 전반적인 흐름을 고려했을 때 향후 3D 모델링의 정교한 표현력 향상, 고속의 고해상도 렌더링, 편리한 온라인 접근성 등을 예상하게 된다. 관련 산업 종사자들에게는 생성시간의 단축을 가져올 수 있고 일반인은 전문적인 3D 기술이 없어도 우수한 3D 모델을 생성하고 활용할 수 있을 것으로 기대한다.
3차원 컴퓨터 그래픽스에서는 3차원 모델의 표면이 유리나 거울과 같이 반사 특성을 갖는 경우, 반사 효과를 반영하여 렌더링(rendering)하게 된다. 3차원 모델에서 동영상이 물체 표면에 반사되는 경우, 반사 특성을 갖는 3차원 모델의 표면은 동영상의 변화에 따른 반사 영상이 표현되도록 해야 한다. 3차원 컴퓨터 그래픽스에서 사용하는 반사 모델을 이용하여 동영상의 반사 영상을 렌더링하게 되면 처리시간이 많이 걸리게 되므로 고성능 하드웨어의 지원이 필요하다. 본 논문에서는 3차원 컴퓨터그래픽스에서 3차원 모델에서 반사 특성을 갖는 표면에 동영상의 반사 영상을 고속으로 생성하는 방법을 제안한다.
한국인의 인체 절단면 영상으로부터 인체의 3차원 데이터를 생성하였다. 다양한 종류의 3차원 렌더링 영상을 제작하고 이를 기반으로 하는 웹 기반정보시스템을 구축하였다. 인체 영상 정보시스템은 크게 렌더링에 필요한2차원 데이터를 생성하는 단계, 3차원 렌더링 데이터를 생성하는 단계, 영상을 데이터베이스화하고 이를 서비스하기 위한 시스템 구현 단계의 세 부분으로 나눌수 있다. 렌더링을 위한 2차원 영상처리는 절단면 영상의 분할과 정렬을 포함한다. 분할은 절단면 영상에 보여지는 인체의 부위를 구분하도록 하는 절차이고, 정렬은 왜곡된 영상 위치를 바로잡기 위한 절차이다. 3차원 렌더링은 절단면 영상들로부터 3차원 모델의 뷰를 생성하는 절차이다. 병렬처리를 통한 광선 추적 볼륨 렌더링 기법을 사용하여 잘라보기 및 돌려보기 렌더링 뷰를 생성한다. 각 절단면 영상 및 렌더링 영상은 인체영상 브라우저 및 검색기가 접근할 수 있도록 웹 시스템에 로드 하였다. 브라우저는 인체의 위치를 시각적으로 탐색 할 수 있도록 구현되었다. 각 단계별 기술적인 내용을 소개한다.
3차원 영상은 2차원 영상과 달리 사물을 직접 볼 때처럼 입체감을 느낄 수 있으며 영상을 통해 바라보는 공간과 자신의 공간 연결이 더 자연스러워지므로 시각정보에 큰 영향을 주고 있다. 2차원 영상을 3차원으로 변환하기 위하여 몇 가지 방법이 제시되고 있다. 본 논문에서는 3차원 영상을 변환하기 위하여 2차원 단일 영상을 사용하지 알고 계속적으로 입력되는 다중 영상을 MPEG의 움직임 벡터를 적용한 공간적 분석 알고리즘을 제안한 결과 실험대상으로부터 3차원 효과를 확인하였다.
본 논문에서는 구조광 3차원 시스템을 위하여 영상처리를 하여 3차원 정밀도를 높이는 방법을 제안한다. 구조광 기반의 3차원 시스템은 투사된 패턴을 특징점으로 하기 때문에 프로젝터와 카메라 사이에 정확한 대응점을 획득해야만 3차원 복원 신뢰성을 높일 수 있다. 그러나 환경에 따라 정확한 대응점 획득이 어려운 점이 많다. 실제 환경에서 물체들은 물체의 재질과 물체 표면의 색상 등의 이유로 서로 다른 반사율을 가지고 있어 여러 물체들이 혼재 되어 있는 환경에서 각각 물체에 투사된 패턴을 정확히 구별하는 일은 어려운 일이다. 따라서 패턴을 획득한 2차원 영상을 개선하여 패턴을 정확히 구별하여 프로젝터와 카메라 간의 화소 대응점의 정확도를 높여야만 3차원 복원 데이터의 신뢰도를 높일 수 있다. 따라서 본 논문에서는 노이즈 제거 및 다양한 영상처리를 통하여 2차원 영상들에서 패턴을 정확히 구분하도록 하여 화소 대응점의 정확도를 높임으로써 최종적으로 3차원 정밀도를 개선할 수 있는 방법을 제공한다.
본 논문에서는 지상파 DMB에서의 DIBR(깊이 영상 기반 렌더링) 기반의 3차원 서비스를 위한 깊이 영상 전처리 방법을 제안한다. 지상파 DMB 환경에서의 3차원 서비스는 HD급 화질의 3차원TV와 달리 작은 화면을 통해 3차원 영상이 출력되고, 3차원 영상의 전송량에 제약이 따르기 때문에 DIBR을 이용한 3차원 서비스 모델이 주목 받고 있다. 그러나 DIBR을 이용하여 3차원 서비스를 하는 경우에 획득된 깊이 영상을 그대로 사용하게 되면 비 폐색 영역으로 인한 홀이 발생하게 되고, 깊이 영상의 연속성으로 인해 객체 내에 홀이 발생되는 문제점을 가지게 된다. 이에 깊이 영상이 가지는 값을 화소의 이동거리와 특성에 따라 같은 값으로 조절하여 객체 내에 발생되는 홀의 수를 감소시키고, 경사도 방향 기반 평활화 필터를 이용하여 깊이 영상의 비연속성을 줄여 홀을 분산시킴으로서 렌더링된 3차원 영상의 입체감을 유지하면서 화질을 향상시켰다.
본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.
운동(motion) 벡터는 보고 있는 카메라와 관측되는 대상물 사이의 상대적인 움직임에 의해서 발생되는 3차원 물체의 속도가 2차원 영상에 투사되어 맺히는 영상에서의 2차원 속도 벡터를 가리킨다 영상에서 물체의 움직임은 3차원 공간상의 운동을 알 수 있는 중요한 정보로써 물체를 추적하는데 응용되고 있다. 본 논문에서는 여러 장의 연속적인 2차원 밝기 영상으로부터 카메라의 움직임을 추정하는 문제를 다룬다. 기존의 특징 기반 추적 기법에서는 저 단계의 영상 처리 과정에서 모델과 배경의 특징점이 서로 분리되지 않거나, 모델의 특징(feature)이 소실되었을 경우, 추적이 용이하지 못하고, 카메라와 3차원 물체의 병진과 회전 운동에 의해 발생된 움직임의 경우 3차원 표적 특징이 많이 사라져서 오차가 많이 누적되기도 한다. 본 논문에서는 이러한 문제를 해결하기 위하여 목표물 및 배경 특징들을 사용하여 카메라의 운동 정보를 찾아내는 기법을 제안한다. 제안하는 3차원 카메라의 운동 정보 추정 기법은 크게 두 장의 연속된 영상으로부터 3차원 모델과 배경의 많은 특징들에 대한 광류(optical flow) 검색 과정과, 이로부터 취득한 움직임 벡터와 카메라의 비선형 운동 방정식과 Lagrange multiplier를 통한 카메라의 운동 정보 추정 과정으로 구성된다.
최근 컴퓨터 그래픽 기술이 발전함에 따라 가상으로 만들어낸 객체와 현실 객체 사이의 분간이 어려워지고 있으며, AR/VR/XR 등의 서비스를 위해 현실 객체를 컴퓨터 그래픽으로 표현하는 기술의 연구가 활발히 진행되고 있다. 포인트 클라우드는 현실 객체를 표현하는 기술 중의 하나로 객체의 표면을 수많은 3차원의 점으로 표현하며, 2차원 영상보다 더욱 거대한 데이터 크기를 가지게 된다. 이를 다양한 서비스에 응용하기 위해서는 3차원 데이터의 특징에 맞는 고효율의 압축 기술이 필요하며, 국제표준기구인 MPEG에서는 연속적인 움직임을 가지는 동적 포인트 클라우드를 2차원 평면으로 투영하여 비디오 코덱을 사용해 압축하는 Video-based Point Cloud Compression (V-PCC) 기술이 연구되고 있다. 포인트 클라우드를 2차원 평면에 투영하는 방식은 점유 맵 (Occupancy Map), 기하 영상 (Geometry Image), 속성 영상 (Attribute Image) 등의 2차원 정보와 보조 정보를 사용해 압축을 진행하고, 부호화 과정에서는 보조 정보와 2차원 영상들의 정보를 사용해 3차원 포인트 클라우드를 재구성한다. 2차원 영상을 사용해 포인트 클라우드를 생성하는 특징 때문에 압축 과정에서 발생하는 영상 정보의 열화는 포인트 클라우드의 품질에 영향을 미친다. 이와 마찬가지로 추가적인 기술을 사용한 2차원 영상 정보의 향상으로 포인트 클라우드의 품질을 향상할 수 있을 것으로 예상된다. 이에 본 논문은 V-PCC 기술에서 생성되는 영상 정보에 2차원 보간 (Interpolation) 기술을 적용하여 기존의 영상 정보에 포함되지 않은 추가적인 포인트를 생성하는 것으로 재구성되는 포인트 클라우드의 밀도를 증가시키고 그 영향을 분석하고자 한다.
얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용하여 획득되기 때문에 얼굴의 3차원 정보를 얻기 위해서는 많은 비용이 요구된다. 본 논문에서는 일반적으로 손쉽게 얻을 수 있는 2차원의 얼굴 영상 시퀀스로부터 효과적으로 3차월 얼굴 형태를 추적하고 재구성하기 위한 3차원 Active Appearance Model (3D-AAM) 방법을 제안한다. 얼굴의 3차원 변화 정보를 추정하기 위해 학습 영상은 정면 얼굴 포즈로 다양한 얼굴 표정 변화를 포함한 영상과 표정 변화를 갖지 않으면서 서로 크게 다른 얼굴 포즈를 갖는 영상으로 구성한다. 입력 영상의 3차원 얼굴 변화를 추정하기 위해 먼저 서로 다른 포즈를 갖는 학습 영상으로부터 얼굴의 각 특징점(Land-mark)의 기하학적 변화를 이용하여 깊이 정보를 추정하고 추정된 특징점의 깊이 정보를 입력 영상의 2차원 얼굴 변화에 추가하여 최종적으로 입력 얼굴의 3차원 변화를 추정한다. 본 논문에서 제안된 방법은 얼굴의 다양한 표정 변화와 함께 3차원의 얼굴 포즈 변화를 포함한 실험 영상을 이용하여 기존의 AAM에 비해 효과적이면서 빠르게 입력 얼굴을 추적(Fitting)할 수 있으며 입력 영상의 정확한 3차원 얼굴 형태를 생성할 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.